
chpgvd.f(3) LAPACK chpgvd.f(3)
NAME
chpgvd.f 
SYNOPSIS
Functions/Subroutines
subroutine chpgvd (ITYPE, JOBZ, UPLO, N, AP, BP, W, Z, LDZ, WORK, LWORK, RWORK, LRWORK,
IWORK, LIWORK, INFO)
CHPGST
Function/Subroutine Documentation
subroutine chpgvd (integerITYPE, characterJOBZ, characterUPLO, integerN, complex, dimension( *
)AP, complex, dimension( * )BP, real, dimension( * )W, complex, dimension( ldz, * )Z,
integerLDZ, complex, dimension( * )WORK, integerLWORK, real, dimension( * )RWORK,
integerLRWORK, integer, dimension( * )IWORK, integerLIWORK, integerINFO)
CHPGST
Purpose:
CHPGVD computes all the eigenvalues and, optionally, the eigenvectors
of a complex generalized Hermitiandefinite eigenproblem, of the form
A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x. Here A and
B are assumed to be Hermitian, stored in packed format, and B is also
positive definite.
If eigenvectors are desired, it uses a divide and conquer algorithm.
The divide and conquer algorithm makes very mild assumptions about
floating point arithmetic. It will work on machines with a guard
digit in add/subtract, or on those binary machines without guard
digits which subtract like the Cray XMP, Cray YMP, Cray C90, or
Cray2. It could conceivably fail on hexadecimal or decimal machines
without guard digits, but we know of none.
Parameters:
ITYPE
ITYPE is INTEGER
Specifies the problem type to be solved:
= 1: A*x = (lambda)*B*x
= 2: A*B*x = (lambda)*x
= 3: B*A*x = (lambda)*x
JOBZ
JOBZ is CHARACTER*1
= 'N': Compute eigenvalues only;
= 'V': Compute eigenvalues and eigenvectors.
UPLO
UPLO is CHARACTER*1
= 'U': Upper triangles of A and B are stored;
= 'L': Lower triangles of A and B are stored.
N
N is INTEGER
The order of the matrices A and B. N >= 0.
AP
AP is COMPLEX array, dimension (N*(N+1)/2)
On entry, the upper or lower triangle of the Hermitian matrix
A, packed columnwise in a linear array. The jth column of A
is stored in the array AP as follows:
if UPLO = 'U', AP(i + (j1)*j/2) = A(i,j) for 1<=i<=j;
if UPLO = 'L', AP(i + (j1)*(2*nj)/2) = A(i,j) for j<=i<=n.
On exit, the contents of AP are destroyed.
BP
BP is COMPLEX array, dimension (N*(N+1)/2)
On entry, the upper or lower triangle of the Hermitian matrix
B, packed columnwise in a linear array. The jth column of B
is stored in the array BP as follows:
if UPLO = 'U', BP(i + (j1)*j/2) = B(i,j) for 1<=i<=j;
if UPLO = 'L', BP(i + (j1)*(2*nj)/2) = B(i,j) for j<=i<=n.
On exit, the triangular factor U or L from the Cholesky
factorization B = U**H*U or B = L*L**H, in the same storage
format as B.
W
W is REAL array, dimension (N)
If INFO = 0, the eigenvalues in ascending order.
Z
Z is COMPLEX array, dimension (LDZ, N)
If JOBZ = 'V', then if INFO = 0, Z contains the matrix Z of
eigenvectors. The eigenvectors are normalized as follows:
if ITYPE = 1 or 2, Z**H*B*Z = I;
if ITYPE = 3, Z**H*inv(B)*Z = I.
If JOBZ = 'N', then Z is not referenced.
LDZ
LDZ is INTEGER
The leading dimension of the array Z. LDZ >= 1, and if
JOBZ = 'V', LDZ >= max(1,N).
WORK
WORK is COMPLEX array, dimension (MAX(1,LWORK))
On exit, if INFO = 0, WORK(1) returns the required LWORK.
LWORK
LWORK is INTEGER
The dimension of array WORK.
If N <= 1, LWORK >= 1.
If JOBZ = 'N' and N > 1, LWORK >= N.
If JOBZ = 'V' and N > 1, LWORK >= 2*N.
If LWORK = 1, then a workspace query is assumed; the routine
only calculates the required sizes of the WORK, RWORK and
IWORK arrays, returns these values as the first entries of
the WORK, RWORK and IWORK arrays, and no error message
related to LWORK or LRWORK or LIWORK is issued by XERBLA.
RWORK
RWORK is REAL array, dimension (MAX(1,LRWORK))
On exit, if INFO = 0, RWORK(1) returns the required LRWORK.
LRWORK
LRWORK is INTEGER
The dimension of array RWORK.
If N <= 1, LRWORK >= 1.
If JOBZ = 'N' and N > 1, LRWORK >= N.
If JOBZ = 'V' and N > 1, LRWORK >= 1 + 5*N + 2*N**2.
If LRWORK = 1, then a workspace query is assumed; the
routine only calculates the required sizes of the WORK, RWORK
and IWORK arrays, returns these values as the first entries
of the WORK, RWORK and IWORK arrays, and no error message
related to LWORK or LRWORK or LIWORK is issued by XERBLA.
IWORK
IWORK is INTEGER array, dimension (MAX(1,LIWORK))
On exit, if INFO = 0, IWORK(1) returns the required LIWORK.
LIWORK
LIWORK is INTEGER
The dimension of array IWORK.
If JOBZ = 'N' or N <= 1, LIWORK >= 1.
If JOBZ = 'V' and N > 1, LIWORK >= 3 + 5*N.
If LIWORK = 1, then a workspace query is assumed; the
routine only calculates the required sizes of the WORK, RWORK
and IWORK arrays, returns these values as the first entries
of the WORK, RWORK and IWORK arrays, and no error message
related to LWORK or LRWORK or LIWORK is issued by XERBLA.
INFO
INFO is INTEGER
= 0: successful exit
< 0: if INFO = i, the ith argument had an illegal value
> 0: CPPTRF or CHPEVD returned an error code:
<= N: if INFO = i, CHPEVD failed to converge;
i offdiagonal elements of an intermediate
tridiagonal form did not convergeto zero;
> N: if INFO = N + i, for 1 <= i <= n, then the leading
minor of order i of B is not positive definite.
The factorization of B could not be completed and
no eigenvalues or eigenvectors were computed.
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
November 2011
Contributors:
Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA
Definition at line 231 of file chpgvd.f.
Author
Generated automatically by Doxygen for LAPACK from the source code.
Version 3.4.2 Tue Sep 25 2012 chpgvd.f(3) 
