# chegs2(3) [centos man page]

chegs2.f(3) LAPACK chegs2.f(3)NAME

chegs2.f-SYNOPSIS

Functions/Subroutines subroutine chegs2 (ITYPE, UPLO, N, A, LDA, B, LDB, INFO) CHEGS2 reduces a Hermitian definite generalized eigenproblem to standard form, using the factorization results obtained from cpotrf (unblocked algorithm).Function/Subroutine Documentation subroutine chegs2 (integerITYPE, characterUPLO, integerN, complex, dimension( lda, * )A, integerLDA, complex, dimension( ldb, * )B, integerLDB, integerINFO) CHEGS2 reduces a Hermitian definite generalized eigenproblem to standard form, using the factorization results obtained from cpotrf (unblocked algorithm). Purpose: CHEGS2 reduces a complex Hermitian-definite generalized eigenproblem to standard form. If ITYPE = 1, the problem is A*x = lambda*B*x, and A is overwritten by inv(U**H)*A*inv(U) or inv(L)*A*inv(L**H) If ITYPE = 2 or 3, the problem is A*B*x = lambda*x or B*A*x = lambda*x, and A is overwritten by U*A*U**H or L**H *A*L. B must have been previously factorized as U**H *U or L*L**H by ZPOTRF. Parameters: ITYPE ITYPE is INTEGER = 1: compute inv(U**H)*A*inv(U) or inv(L)*A*inv(L**H); = 2 or 3: compute U*A*U**H or L**H *A*L. UPLO UPLO is CHARACTER*1 Specifies whether the upper or lower triangular part of the Hermitian matrix A is stored, and how B has been factorized. = 'U': Upper triangular = 'L': Lower triangular N N is INTEGER The order of the matrices A and B. N >= 0. A A is COMPLEX array, dimension (LDA,N) On entry, the Hermitian matrix A. If UPLO = 'U', the leading n by n upper triangular part of A contains the upper triangular part of the matrix A, and the strictly lower triangular part of A is not referenced. If UPLO = 'L', the leading n by n lower triangular part of A contains the lower triangular part of the matrix A, and the strictly upper triangular part of A is not referenced. On exit, if INFO = 0, the transformed matrix, stored in the same format as A. LDA LDA is INTEGER The leading dimension of the array A. LDA >= max(1,N). B B is COMPLEX array, dimension (LDB,N) The triangular factor from the Cholesky factorization of B, as returned by CPOTRF. LDB LDB is INTEGER The leading dimension of the array B. LDB >= max(1,N). INFO INFO is INTEGER = 0: successful exit. < 0: if INFO =, the i-th argument had an illegal value. Author: Univ. of Tennessee Univ. of California Berkeley Univ. of Colorado Denver NAG Ltd. Date: September 2012 Definition at line 128 of file chegs2.f.-iAuthorGenerated automatically by Doxygen for LAPACK from the source code.Version 3.4.2Tue Sep 25 2012 chegs2.f(3)

## Check Out this Related Man Page

zhegs2.f(3) LAPACK zhegs2.f(3)NAME

zhegs2.f-SYNOPSIS

Functions/Subroutines subroutine zhegs2 (ITYPE, UPLO, N, A, LDA, B, LDB, INFO) ZHEGS2 reduces a Hermitian definite generalized eigenproblem to standard form, using the factorization results obtained from cpotrf (unblocked algorithm).Function/Subroutine Documentation subroutine zhegs2 (integerITYPE, characterUPLO, integerN, complex*16, dimension( lda, * )A, integerLDA, complex*16, dimension( ldb, * )B, integerLDB, integerINFO) ZHEGS2 reduces a Hermitian definite generalized eigenproblem to standard form, using the factorization results obtained from cpotrf (unblocked algorithm). Purpose: ZHEGS2 reduces a complex Hermitian-definite generalized eigenproblem to standard form. If ITYPE = 1, the problem is A*x = lambda*B*x, and A is overwritten by inv(U**H)*A*inv(U) or inv(L)*A*inv(L**H) If ITYPE = 2 or 3, the problem is A*B*x = lambda*x or B*A*x = lambda*x, and A is overwritten by U*A*U**H or L**H *A*L. B must have been previously factorized as U**H *U or L*L**H by ZPOTRF. Parameters: ITYPE ITYPE is INTEGER = 1: compute inv(U**H)*A*inv(U) or inv(L)*A*inv(L**H); = 2 or 3: compute U*A*U**H or L**H *A*L. UPLO UPLO is CHARACTER*1 Specifies whether the upper or lower triangular part of the Hermitian matrix A is stored, and how B has been factorized. = 'U': Upper triangular = 'L': Lower triangular N N is INTEGER The order of the matrices A and B. N >= 0. A A is COMPLEX*16 array, dimension (LDA,N) On entry, the Hermitian matrix A. If UPLO = 'U', the leading n by n upper triangular part of A contains the upper triangular part of the matrix A, and the strictly lower triangular part of A is not referenced. If UPLO = 'L', the leading n by n lower triangular part of A contains the lower triangular part of the matrix A, and the strictly upper triangular part of A is not referenced. On exit, if INFO = 0, the transformed matrix, stored in the same format as A. LDA LDA is INTEGER The leading dimension of the array A. LDA >= max(1,N). B B is COMPLEX*16 array, dimension (LDB,N) The triangular factor from the Cholesky factorization of B, as returned by ZPOTRF. LDB LDB is INTEGER The leading dimension of the array B. LDB >= max(1,N). INFO INFO is INTEGER = 0: successful exit. < 0: if INFO =, the i-th argument had an illegal value. Author: Univ. of Tennessee Univ. of California Berkeley Univ. of Colorado Denver NAG Ltd. Date: September 2012 Definition at line 128 of file zhegs2.f.-iAuthorGenerated automatically by Doxygen for LAPACK from the source code.Version 3.4.2Tue Sep 25 2012 zhegs2.f(3)