
chbevx.f(3) LAPACK chbevx.f(3)
NAME
chbevx.f 
SYNOPSIS
Functions/Subroutines
subroutine chbevx (JOBZ, RANGE, UPLO, N, KD, AB, LDAB, Q, LDQ, VL, VU, IL, IU, ABSTOL, M,
W, Z, LDZ, WORK, RWORK, IWORK, IFAIL, INFO)
CHBEVX computes the eigenvalues and, optionally, the left and/or right eigenvectors
for OTHER matrices
Function/Subroutine Documentation
subroutine chbevx (characterJOBZ, characterRANGE, characterUPLO, integerN, integerKD, complex,
dimension( ldab, * )AB, integerLDAB, complex, dimension( ldq, * )Q, integerLDQ, realVL,
realVU, integerIL, integerIU, realABSTOL, integerM, real, dimension( * )W, complex,
dimension( ldz, * )Z, integerLDZ, complex, dimension( * )WORK, real, dimension( * )RWORK,
integer, dimension( * )IWORK, integer, dimension( * )IFAIL, integerINFO)
CHBEVX computes the eigenvalues and, optionally, the left and/or right eigenvectors for
OTHER matrices
Purpose:
CHBEVX computes selected eigenvalues and, optionally, eigenvectors
of a complex Hermitian band matrix A. Eigenvalues and eigenvectors
can be selected by specifying either a range of values or a range of
indices for the desired eigenvalues.
Parameters:
JOBZ
JOBZ is CHARACTER*1
= 'N': Compute eigenvalues only;
= 'V': Compute eigenvalues and eigenvectors.
RANGE
RANGE is CHARACTER*1
= 'A': all eigenvalues will be found;
= 'V': all eigenvalues in the halfopen interval (VL,VU]
will be found;
= 'I': the ILth through IUth eigenvalues will be found.
UPLO
UPLO is CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.
N
N is INTEGER
The order of the matrix A. N >= 0.
KD
KD is INTEGER
The number of superdiagonals of the matrix A if UPLO = 'U',
or the number of subdiagonals if UPLO = 'L'. KD >= 0.
AB
AB is COMPLEX array, dimension (LDAB, N)
On entry, the upper or lower triangle of the Hermitian band
matrix A, stored in the first KD+1 rows of the array. The
jth column of A is stored in the jth column of the array AB
as follows:
if UPLO = 'U', AB(kd+1+ij,j) = A(i,j) for max(1,jkd)<=i<=j;
if UPLO = 'L', AB(1+ij,j) = A(i,j) for j<=i<=min(n,j+kd).
On exit, AB is overwritten by values generated during the
reduction to tridiagonal form.
LDAB
LDAB is INTEGER
The leading dimension of the array AB. LDAB >= KD + 1.
Q
Q is COMPLEX array, dimension (LDQ, N)
If JOBZ = 'V', the NbyN unitary matrix used in the
reduction to tridiagonal form.
If JOBZ = 'N', the array Q is not referenced.
LDQ
LDQ is INTEGER
The leading dimension of the array Q. If JOBZ = 'V', then
LDQ >= max(1,N).
VL
VL is REAL
VU
VU is REAL
If RANGE='V', the lower and upper bounds of the interval to
be searched for eigenvalues. VL < VU.
Not referenced if RANGE = 'A' or 'I'.
IL
IL is INTEGER
IU
IU is INTEGER
If RANGE='I', the indices (in ascending order) of the
smallest and largest eigenvalues to be returned.
1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
Not referenced if RANGE = 'A' or 'V'.
ABSTOL
ABSTOL is REAL
The absolute error tolerance for the eigenvalues.
An approximate eigenvalue is accepted as converged
when it is determined to lie in an interval [a,b]
of width less than or equal to
ABSTOL + EPS * max( a,b ) ,
where EPS is the machine precision. If ABSTOL is less than
or equal to zero, then EPS*T will be used in its place,
where T is the 1norm of the tridiagonal matrix obtained
by reducing AB to tridiagonal form.
Eigenvalues will be computed most accurately when ABSTOL is
set to twice the underflow threshold 2*SLAMCH('S'), not zero.
If this routine returns with INFO>0, indicating that some
eigenvectors did not converge, try setting ABSTOL to
2*SLAMCH('S').
See "Computing Small Singular Values of Bidiagonal Matrices
with Guaranteed High Relative Accuracy," by Demmel and
Kahan, LAPACK Working Note #3.
M
M is INTEGER
The total number of eigenvalues found. 0 <= M <= N.
If RANGE = 'A', M = N, and if RANGE = 'I', M = IUIL+1.
W
W is REAL array, dimension (N)
The first M elements contain the selected eigenvalues in
ascending order.
Z
Z is COMPLEX array, dimension (LDZ, max(1,M))
If JOBZ = 'V', then if INFO = 0, the first M columns of Z
contain the orthonormal eigenvectors of the matrix A
corresponding to the selected eigenvalues, with the ith
column of Z holding the eigenvector associated with W(i).
If an eigenvector fails to converge, then that column of Z
contains the latest approximation to the eigenvector, and the
index of the eigenvector is returned in IFAIL.
If JOBZ = 'N', then Z is not referenced.
Note: the user must ensure that at least max(1,M) columns are
supplied in the array Z; if RANGE = 'V', the exact value of M
is not known in advance and an upper bound must be used.
LDZ
LDZ is INTEGER
The leading dimension of the array Z. LDZ >= 1, and if
JOBZ = 'V', LDZ >= max(1,N).
WORK
WORK is COMPLEX array, dimension (N)
RWORK
RWORK is REAL array, dimension (7*N)
IWORK
IWORK is INTEGER array, dimension (5*N)
IFAIL
IFAIL is INTEGER array, dimension (N)
If JOBZ = 'V', then if INFO = 0, the first M elements of
IFAIL are zero. If INFO > 0, then IFAIL contains the
indices of the eigenvectors that failed to converge.
If JOBZ = 'N', then IFAIL is not referenced.
INFO
INFO is INTEGER
= 0: successful exit
< 0: if INFO = i, the ith argument had an illegal value
> 0: if INFO = i, then i eigenvectors failed to converge.
Their indices are stored in array IFAIL.
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
November 2011
Definition at line 259 of file chbevx.f.
Author
Generated automatically by Doxygen for LAPACK from the source code.
Version 3.4.2 Tue Sep 25 2012 chbevx.f(3) 
