Visit Our UNIX and Linux User Community

Linux and UNIX Man Pages

Test Your Knowledge in Computers #263
Difficulty: Easy
Alan Turing played a key role in cracking intercepted coded messages that enabled the Allies to defeat the Nazis in many crucial engagements, including the Battle of the Atlantic, and in so doing helped win and end the war.
True or False?
Linux & Unix Commands - Search Man Pages

chbev.f(3) [centos man page]

chbev.f(3)							      LAPACK								chbev.f(3)

NAME
chbev.f - SYNOPSIS
Functions/Subroutines subroutine chbev (JOBZ, UPLO, N, KD, AB, LDAB, W, Z, LDZ, WORK, RWORK, INFO) CHBEV computes the eigenvalues and, optionally, the left and/or right eigenvectors for OTHER matrices Function/Subroutine Documentation subroutine chbev (characterJOBZ, characterUPLO, integerN, integerKD, complex, dimension( ldab, * )AB, integerLDAB, real, dimension( * )W, complex, dimension( ldz, * )Z, integerLDZ, complex, dimension( * )WORK, real, dimension( * )RWORK, integerINFO) CHBEV computes the eigenvalues and, optionally, the left and/or right eigenvectors for OTHER matrices Purpose: CHBEV computes all the eigenvalues and, optionally, eigenvectors of a complex Hermitian band matrix A. Parameters: JOBZ JOBZ is CHARACTER*1 = 'N': Compute eigenvalues only; = 'V': Compute eigenvalues and eigenvectors. UPLO UPLO is CHARACTER*1 = 'U': Upper triangle of A is stored; = 'L': Lower triangle of A is stored. N N is INTEGER The order of the matrix A. N >= 0. KD KD is INTEGER The number of superdiagonals of the matrix A if UPLO = 'U', or the number of subdiagonals if UPLO = 'L'. KD >= 0. AB AB is COMPLEX array, dimension (LDAB, N) On entry, the upper or lower triangle of the Hermitian band matrix A, stored in the first KD+1 rows of the array. The j-th column of A is stored in the j-th column of the array AB as follows: if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j; if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd). On exit, AB is overwritten by values generated during the reduction to tridiagonal form. If UPLO = 'U', the first superdiagonal and the diagonal of the tridiagonal matrix T are returned in rows KD and KD+1 of AB, and if UPLO = 'L', the diagonal and first subdiagonal of T are returned in the first two rows of AB. LDAB LDAB is INTEGER The leading dimension of the array AB. LDAB >= KD + 1. W W is REAL array, dimension (N) If INFO = 0, the eigenvalues in ascending order. Z Z is COMPLEX array, dimension (LDZ, N) If JOBZ = 'V', then if INFO = 0, Z contains the orthonormal eigenvectors of the matrix A, with the i-th column of Z holding the eigenvector associated with W(i). If JOBZ = 'N', then Z is not referenced. LDZ LDZ is INTEGER The leading dimension of the array Z. LDZ >= 1, and if JOBZ = 'V', LDZ >= max(1,N). WORK WORK is COMPLEX array, dimension (N) RWORK RWORK is REAL array, dimension (max(1,3*N-2)) INFO INFO is INTEGER = 0: successful exit. < 0: if INFO = -i, the i-th argument had an illegal value. > 0: if INFO = i, the algorithm failed to converge; i off-diagonal elements of an intermediate tridiagonal form did not converge to zero. Author: Univ. of Tennessee Univ. of California Berkeley Univ. of Colorado Denver NAG Ltd. Date: November 2011 Definition at line 152 of file chbev.f. Author Generated automatically by Doxygen for LAPACK from the source code. Version 3.4.2 Tue Sep 25 2012 chbev.f(3)

Check Out this Related Man Page

zhbev.f(3)							      LAPACK								zhbev.f(3)

NAME
zhbev.f - SYNOPSIS
Functions/Subroutines subroutine zhbev (JOBZ, UPLO, N, KD, AB, LDAB, W, Z, LDZ, WORK, RWORK, INFO) ZHBEV computes the eigenvalues and, optionally, the left and/or right eigenvectors for OTHER matrices Function/Subroutine Documentation subroutine zhbev (characterJOBZ, characterUPLO, integerN, integerKD, complex*16, dimension( ldab, * )AB, integerLDAB, double precision, dimension( * )W, complex*16, dimension( ldz, * )Z, integerLDZ, complex*16, dimension( * )WORK, double precision, dimension( * )RWORK, integerINFO) ZHBEV computes the eigenvalues and, optionally, the left and/or right eigenvectors for OTHER matrices Purpose: ZHBEV computes all the eigenvalues and, optionally, eigenvectors of a complex Hermitian band matrix A. Parameters: JOBZ JOBZ is CHARACTER*1 = 'N': Compute eigenvalues only; = 'V': Compute eigenvalues and eigenvectors. UPLO UPLO is CHARACTER*1 = 'U': Upper triangle of A is stored; = 'L': Lower triangle of A is stored. N N is INTEGER The order of the matrix A. N >= 0. KD KD is INTEGER The number of superdiagonals of the matrix A if UPLO = 'U', or the number of subdiagonals if UPLO = 'L'. KD >= 0. AB AB is COMPLEX*16 array, dimension (LDAB, N) On entry, the upper or lower triangle of the Hermitian band matrix A, stored in the first KD+1 rows of the array. The j-th column of A is stored in the j-th column of the array AB as follows: if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j; if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd). On exit, AB is overwritten by values generated during the reduction to tridiagonal form. If UPLO = 'U', the first superdiagonal and the diagonal of the tridiagonal matrix T are returned in rows KD and KD+1 of AB, and if UPLO = 'L', the diagonal and first subdiagonal of T are returned in the first two rows of AB. LDAB LDAB is INTEGER The leading dimension of the array AB. LDAB >= KD + 1. W W is DOUBLE PRECISION array, dimension (N) If INFO = 0, the eigenvalues in ascending order. Z Z is COMPLEX*16 array, dimension (LDZ, N) If JOBZ = 'V', then if INFO = 0, Z contains the orthonormal eigenvectors of the matrix A, with the i-th column of Z holding the eigenvector associated with W(i). If JOBZ = 'N', then Z is not referenced. LDZ LDZ is INTEGER The leading dimension of the array Z. LDZ >= 1, and if JOBZ = 'V', LDZ >= max(1,N). WORK WORK is COMPLEX*16 array, dimension (N) RWORK RWORK is DOUBLE PRECISION array, dimension (max(1,3*N-2)) INFO INFO is INTEGER = 0: successful exit. < 0: if INFO = -i, the i-th argument had an illegal value. > 0: if INFO = i, the algorithm failed to converge; i off-diagonal elements of an intermediate tridiagonal form did not converge to zero. Author: Univ. of Tennessee Univ. of California Berkeley Univ. of Colorado Denver NAG Ltd. Date: November 2011 Definition at line 152 of file zhbev.f. Author Generated automatically by Doxygen for LAPACK from the source code. Version 3.4.2 Tue Sep 25 2012 zhbev.f(3)

Featured Tech Videos