# cgerq2.f(3) [centos man page]

```cgerq2.f(3)							      LAPACK							       cgerq2.f(3)

NAME
cgerq2.f -

SYNOPSIS
Functions/Subroutines
subroutine cgerq2 (M, N, A, LDA, TAU, WORK, INFO)
CGERQ2 computes the RQ factorization of a general rectangular matrix using an unblocked algorithm.

Function/Subroutine Documentation
subroutine cgerq2 (integerM, integerN, complex, dimension( lda, * )A, integerLDA, complex, dimension( * )TAU, complex, dimension( * )WORK,
integerINFO)
CGERQ2 computes the RQ factorization of a general rectangular matrix using an unblocked algorithm.

Purpose:

CGERQ2 computes an RQ factorization of a complex m by n matrix A:
A = R * Q.

Parameters:
M

M is INTEGER
The number of rows of the matrix A.  M >= 0.

N

N is INTEGER
The number of columns of the matrix A.  N >= 0.

A

A is COMPLEX array, dimension (LDA,N)
On entry, the m by n matrix A.
On exit, if m <= n, the upper triangle of the subarray
A(1:m,n-m+1:n) contains the m by m upper triangular matrix R;
if m >= n, the elements on and above the (m-n)-th subdiagonal
contain the m by n upper trapezoidal matrix R; the remaining
elements, with the array TAU, represent the unitary matrix
Q as a product of elementary reflectors (see Further
Details).

LDA

LDA is INTEGER
The leading dimension of the array A.  LDA >= max(1,M).

TAU

TAU is COMPLEX array, dimension (min(M,N))
The scalar factors of the elementary reflectors (see Further
Details).

WORK

WORK is COMPLEX array, dimension (M)

INFO

INFO is INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value

Author:
Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Date:
September 2012

Further Details:

The matrix Q is represented as a product of elementary reflectors

Q = H(1)**H H(2)**H . . . H(k)**H, where k = min(m,n).

Each H(i) has the form

H(i) = I - tau * v * v**H

where tau is a complex scalar, and v is a complex vector with
v(n-k+i+1:n) = 0 and v(n-k+i) = 1; conjg(v(1:n-k+i-1)) is stored on
exit in A(m-k+i,1:n-k+i-1), and tau in TAU(i).

Definition at line 124 of file cgerq2.f.

Author
Generated automatically by Doxygen for LAPACK from the source code.

Version 3.4.2							  Tue Sep 25 2012						       cgerq2.f(3)```

## Check Out this Related Man Page

```zgerq2.f(3)							      LAPACK							       zgerq2.f(3)

NAME
zgerq2.f -

SYNOPSIS
Functions/Subroutines
subroutine zgerq2 (M, N, A, LDA, TAU, WORK, INFO)
ZGERQ2 computes the RQ factorization of a general rectangular matrix using an unblocked algorithm.

Function/Subroutine Documentation
subroutine zgerq2 (integerM, integerN, complex*16, dimension( lda, * )A, integerLDA, complex*16, dimension( * )TAU, complex*16, dimension( *
)WORK, integerINFO)
ZGERQ2 computes the RQ factorization of a general rectangular matrix using an unblocked algorithm.

Purpose:

ZGERQ2 computes an RQ factorization of a complex m by n matrix A:
A = R * Q.

Parameters:
M

M is INTEGER
The number of rows of the matrix A.  M >= 0.

N

N is INTEGER
The number of columns of the matrix A.  N >= 0.

A

A is COMPLEX*16 array, dimension (LDA,N)
On entry, the m by n matrix A.
On exit, if m <= n, the upper triangle of the subarray
A(1:m,n-m+1:n) contains the m by m upper triangular matrix R;
if m >= n, the elements on and above the (m-n)-th subdiagonal
contain the m by n upper trapezoidal matrix R; the remaining
elements, with the array TAU, represent the unitary matrix
Q as a product of elementary reflectors (see Further
Details).

LDA

LDA is INTEGER
The leading dimension of the array A.  LDA >= max(1,M).

TAU

TAU is COMPLEX*16 array, dimension (min(M,N))
The scalar factors of the elementary reflectors (see Further
Details).

WORK

WORK is COMPLEX*16 array, dimension (M)

INFO

INFO is INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value

Author:
Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Date:
September 2012

Further Details:

The matrix Q is represented as a product of elementary reflectors

Q = H(1)**H H(2)**H . . . H(k)**H, where k = min(m,n).

Each H(i) has the form

H(i) = I - tau * v * v**H

where tau is a complex scalar, and v is a complex vector with
v(n-k+i+1:n) = 0 and v(n-k+i) = 1; conjg(v(1:n-k+i-1)) is stored on
exit in A(m-k+i,1:n-k+i-1), and tau in TAU(i).

Definition at line 124 of file zgerq2.f.

Author
Generated automatically by Doxygen for LAPACK from the source code.

Version 3.4.2							  Tue Sep 25 2012						       zgerq2.f(3)```
Man Page