Linux and UNIX Man Pages

Linux & Unix Commands - Search Man Pages

cgehd2.f(3) [centos man page]

cgehd2.f(3)							      LAPACK							       cgehd2.f(3)

NAME
cgehd2.f - SYNOPSIS
Functions/Subroutines subroutine cgehd2 (N, ILO, IHI, A, LDA, TAU, WORK, INFO) CGEHD2 reduces a general square matrix to upper Hessenberg form using an unblocked algorithm. Function/Subroutine Documentation subroutine cgehd2 (integerN, integerILO, integerIHI, complex, dimension( lda, * )A, integerLDA, complex, dimension( * )TAU, complex, dimension( * )WORK, integerINFO) CGEHD2 reduces a general square matrix to upper Hessenberg form using an unblocked algorithm. Purpose: CGEHD2 reduces a complex general matrix A to upper Hessenberg form H by a unitary similarity transformation: Q**H * A * Q = H . Parameters: N N is INTEGER The order of the matrix A. N >= 0. ILO ILO is INTEGER IHI IHI is INTEGER It is assumed that A is already upper triangular in rows and columns 1:ILO-1 and IHI+1:N. ILO and IHI are normally set by a previous call to CGEBAL; otherwise they should be set to 1 and N respectively. See Further Details. 1 <= ILO <= IHI <= max(1,N). A A is COMPLEX array, dimension (LDA,N) On entry, the n by n general matrix to be reduced. On exit, the upper triangle and the first subdiagonal of A are overwritten with the upper Hessenberg matrix H, and the elements below the first subdiagonal, with the array TAU, represent the unitary matrix Q as a product of elementary reflectors. See Further Details. LDA LDA is INTEGER The leading dimension of the array A. LDA >= max(1,N). TAU TAU is COMPLEX array, dimension (N-1) The scalar factors of the elementary reflectors (see Further Details). WORK WORK is COMPLEX array, dimension (N) INFO INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value. Author: Univ. of Tennessee Univ. of California Berkeley Univ. of Colorado Denver NAG Ltd. Date: September 2012 Further Details: The matrix Q is represented as a product of (ihi-ilo) elementary reflectors Q = H(ilo) H(ilo+1) . . . H(ihi-1). Each H(i) has the form H(i) = I - tau * v * v**H where tau is a complex scalar, and v is a complex vector with v(1:i) = 0, v(i+1) = 1 and v(ihi+1:n) = 0; v(i+2:ihi) is stored on exit in A(i+2:ihi,i), and tau in TAU(i). The contents of A are illustrated by the following example, with n = 7, ilo = 2 and ihi = 6: on entry, on exit, ( a a a a a a a ) ( a a h h h h a ) ( a a a a a a ) ( a h h h h a ) ( a a a a a a ) ( h h h h h h ) ( a a a a a a ) ( v2 h h h h h ) ( a a a a a a ) ( v2 v3 h h h h ) ( a a a a a a ) ( v2 v3 v4 h h h ) ( a ) ( a ) where a denotes an element of the original matrix A, h denotes a modified element of the upper Hessenberg matrix H, and vi denotes an element of the vector defining H(i). Definition at line 150 of file cgehd2.f. Author Generated automatically by Doxygen for LAPACK from the source code. Version 3.4.2 Tue Sep 25 2012 cgehd2.f(3)

Check Out this Related Man Page

zgehd2.f(3)							      LAPACK							       zgehd2.f(3)

NAME
zgehd2.f - SYNOPSIS
Functions/Subroutines subroutine zgehd2 (N, ILO, IHI, A, LDA, TAU, WORK, INFO) ZGEHD2 Function/Subroutine Documentation subroutine zgehd2 (integerN, integerILO, integerIHI, complex*16, dimension( lda, * )A, integerLDA, complex*16, dimension( * )TAU, complex*16, dimension( * )WORK, integerINFO) ZGEHD2 Purpose: ZGEHD2 reduces a complex general matrix A to upper Hessenberg form H by a unitary similarity transformation: Q**H * A * Q = H . Parameters: N N is INTEGER The order of the matrix A. N >= 0. ILO ILO is INTEGER IHI IHI is INTEGER It is assumed that A is already upper triangular in rows and columns 1:ILO-1 and IHI+1:N. ILO and IHI are normally set by a previous call to ZGEBAL; otherwise they should be set to 1 and N respectively. See Further Details. 1 <= ILO <= IHI <= max(1,N). A A is COMPLEX*16 array, dimension (LDA,N) On entry, the n by n general matrix to be reduced. On exit, the upper triangle and the first subdiagonal of A are overwritten with the upper Hessenberg matrix H, and the elements below the first subdiagonal, with the array TAU, represent the unitary matrix Q as a product of elementary reflectors. See Further Details. LDA LDA is INTEGER The leading dimension of the array A. LDA >= max(1,N). TAU TAU is COMPLEX*16 array, dimension (N-1) The scalar factors of the elementary reflectors (see Further Details). WORK WORK is COMPLEX*16 array, dimension (N) INFO INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value. Author: Univ. of Tennessee Univ. of California Berkeley Univ. of Colorado Denver NAG Ltd. Date: November 2011 Further Details: The matrix Q is represented as a product of (ihi-ilo) elementary reflectors Q = H(ilo) H(ilo+1) . . . H(ihi-1). Each H(i) has the form H(i) = I - tau * v * v**H where tau is a complex scalar, and v is a complex vector with v(1:i) = 0, v(i+1) = 1 and v(ihi+1:n) = 0; v(i+2:ihi) is stored on exit in A(i+2:ihi,i), and tau in TAU(i). The contents of A are illustrated by the following example, with n = 7, ilo = 2 and ihi = 6: on entry, on exit, ( a a a a a a a ) ( a a h h h h a ) ( a a a a a a ) ( a h h h h a ) ( a a a a a a ) ( h h h h h h ) ( a a a a a a ) ( v2 h h h h h ) ( a a a a a a ) ( v2 v3 h h h h ) ( a a a a a a ) ( v2 v3 v4 h h h ) ( a ) ( a ) where a denotes an element of the original matrix A, h denotes a modified element of the upper Hessenberg matrix H, and vi denotes an element of the vector defining H(i). Definition at line 150 of file zgehd2.f. Author Generated automatically by Doxygen for LAPACK from the source code. Version 3.4.1 Sun May 26 2013 zgehd2.f(3)
Man Page