CJPEG(1) General Commands Manual CJPEG(1)
NAME
cjpeg - compress an image file to a JPEG file
SYNOPSIS
cjpeg [ options ] [ filename ]
DESCRIPTION
cjpeg compresses the named image file, or the standard input if no file is named, and produces a JPEG/JFIF file on the standard output.
The currently supported input file formats are: PPM (PBMPLUS color format), PGM (PBMPLUS gray-scale format), BMP, Targa, and RLE (Utah
Raster Toolkit format). (RLE is supported only if the URT library is available.)
OPTIONS
All switch names may be abbreviated; for example, -grayscale may be written -gray or -gr. Most of the "basic" switches can be abbreviated
to as little as one letter. Upper and lower case are equivalent (thus -BMP is the same as -bmp). British spellings are also accepted
(e.g., -greyscale), though for brevity these are not mentioned below.
The basic switches are:
-quality N[,...]
Scale quantization tables to adjust image quality. Quality is 0 (worst) to 100 (best); default is 75. (See below for more info.)
-grayscale
Create monochrome JPEG file from color input. Be sure to use this switch when compressing a grayscale BMP file, because cjpeg isn't
bright enough to notice whether a BMP file uses only shades of gray. By saying -grayscale, you'll get a smaller JPEG file that
takes less time to process.
-rgb Create RGB JPEG file. Using this switch suppresses the conversion from RGB colorspace input to the default YCbCr JPEG colorspace.
-optimize
Perform optimization of entropy encoding parameters. Without this, default encoding parameters are used. -optimize usually makes
the JPEG file a little smaller, but cjpeg runs somewhat slower and needs much more memory. Image quality and speed of decompression
are unaffected by -optimize.
-progressive
Create progressive JPEG file (see below).
-targa Input file is Targa format. Targa files that contain an "identification" field will not be automatically recognized by cjpeg; for
such files you must specify -targa to make cjpeg treat the input as Targa format. For most Targa files, you won't need this switch.
The -quality switch lets you trade off compressed file size against quality of the reconstructed image: the higher the quality setting, the
larger the JPEG file, and the closer the output image will be to the original input. Normally you want to use the lowest quality setting
(smallest file) that decompresses into something visually indistinguishable from the original image. For this purpose the quality setting
should be between 50 and 95; the default of 75 is often about right. If you see defects at -quality 75, then go up 5 or 10 counts at a
time until you are happy with the output image. (The optimal setting will vary from one image to another.)
-quality 100 will generate a quantization table of all 1's, minimizing loss in the quantization step (but there is still information loss
in subsampling, as well as roundoff error). This setting is mainly of interest for experimental purposes. Quality values above about 95
are not recommended for normal use; the compressed file size goes up dramatically for hardly any gain in output image quality.
In the other direction, quality values below 50 will produce very small files of low image quality. Settings around 5 to 10 might be use-
ful in preparing an index of a large image library, for example. Try -quality 2 (or so) for some amusing Cubist effects. (Note: quality
values below about 25 generate 2-byte quantization tables, which are considered optional in the JPEG standard. cjpeg emits a warning mes-
sage when you give such a quality value, because some other JPEG programs may be unable to decode the resulting file. Use -baseline if you
need to ensure compatibility at low quality values.)
The -quality option has been extended in this version of cjpeg to support separate quality settings for luminance and chrominance (or, in
general, separate settings for every quantization table slot.) The principle is the same as chrominance subsampling: since the human eye
is more sensitive to spatial changes in brightness than spatial changes in color, the chrominance components can be quantized more than the
luminance components without incurring any visible image quality loss. However, unlike subsampling, this feature reduces data in the fre-
quency domain instead of the spatial domain, which allows for more fine-grained control. This option is useful in quality-sensitive appli-
cations, for which the artifacts generated by subsampling may be unacceptable.
The -quality option accepts a comma-separated list of parameters, which respectively refer to the quality levels that should be assigned to
the quantization table slots. If there are more q-table slots than parameters, then the last parameter is replicated. Thus, if only one
quality parameter is given, this is used for both luminance and chrominance (slots 0 and 1, respectively), preserving the legacy behavior
of cjpeg v6b and prior. More (or customized) quantization tables can be set with the -qtables option and assigned to components with the
-qslots option (see the "wizard" switches below.)
JPEG files generated with separate luminance and chrominance quality are fully compliant with standard JPEG decoders.
CAUTION: For this setting to be useful, be sure to pass an argument of -sample 1x1 to cjpeg to disable chrominance subsampling. Otherwise,
the default subsampling level (2x2, AKA "4:2:0") will be used.
The -progressive switch creates a "progressive JPEG" file. In this type of JPEG file, the data is stored in multiple scans of increasing
quality. If the file is being transmitted over a slow communications link, the decoder can use the first scan to display a low-quality
image very quickly, and can then improve the display with each subsequent scan. The final image is exactly equivalent to a standard JPEG
file of the same quality setting, and the total file size is about the same --- often a little smaller.
Switches for advanced users:
-arithmetic
Use arithmetic coding. Caution: arithmetic coded JPEG is not yet widely implemented, so many decoders will be unable to view an
arithmetic coded JPEG file at all.
-dct int
Use integer DCT method (default).
-dct fast
Use fast integer DCT (less accurate).
-dct float
Use floating-point DCT method. The float method is very slightly more accurate than the int method, but is much slower unless your
machine has very fast floating-point hardware. Also note that results of the floating-point method may vary slightly across
machines, while the integer methods should give the same results everywhere. The fast integer method is much less accurate than the
other two.
-restart N
Emit a JPEG restart marker every N MCU rows, or every N MCU blocks if "B" is attached to the number. -restart 0 (the default) means
no restart markers.
-smooth N
Smooth the input image to eliminate dithering noise. N, ranging from 1 to 100, indicates the strength of smoothing. 0 (the
default) means no smoothing.
-maxmemory N
Set limit for amount of memory to use in processing large images. Value is in thousands of bytes, or millions of bytes if "M" is
attached to the number. For example, -max 4m selects 4000000 bytes. If more space is needed, temporary files will be used.
-outfile name
Send output image to the named file, not to standard output.
-memdst
Compress to memory instead of a file. This feature was implemented mainly as a way of testing the in-memory destination manager
(jpeg_mem_dest()), but it is also useful for benchmarking, since it reduces the I/O overhead.
-verbose
Enable debug printout. More -v's give more output. Also, version information is printed at startup.
-debug Same as -verbose.
The -restart option inserts extra markers that allow a JPEG decoder to resynchronize after a transmission error. Without restart markers,
any damage to a compressed file will usually ruin the image from the point of the error to the end of the image; with restart markers, the
damage is usually confined to the portion of the image up to the next restart marker. Of course, the restart markers occupy extra space.
We recommend -restart 1 for images that will be transmitted across unreliable networks such as Usenet.
The -smooth option filters the input to eliminate fine-scale noise. This is often useful when converting dithered images to JPEG: a moder-
ate smoothing factor of 10 to 50 gets rid of dithering patterns in the input file, resulting in a smaller JPEG file and a better-looking
image. Too large a smoothing factor will visibly blur the image, however.
Switches for wizards:
-baseline
Force baseline-compatible quantization tables to be generated. This clamps quantization values to 8 bits even at low quality set-
tings. (This switch is poorly named, since it does not ensure that the output is actually baseline JPEG. For example, you can use
-baseline and -progressive together.)
-qtables file
Use the quantization tables given in the specified text file.
-qslots N[,...]
Select which quantization table to use for each color component.
-sample HxV[,...]
Set JPEG sampling factors for each color component.
-scans file
Use the scan script given in the specified text file.
The "wizard" switches are intended for experimentation with JPEG. If you don't know what you are doing, don't use them. These switches
are documented further in the file wizard.txt.
EXAMPLES
This example compresses the PPM file foo.ppm with a quality factor of 60 and saves the output as foo.jpg:
cjpeg -quality 60 foo.ppm > foo.jpg
HINTS
Color GIF files are not the ideal input for JPEG; JPEG is really intended for compressing full-color (24-bit) images. In particular, don't
try to convert cartoons, line drawings, and other images that have only a few distinct colors. GIF works great on these, JPEG does not.
If you want to convert a GIF to JPEG, you should experiment with cjpeg's -quality and -smooth options to get a satisfactory conversion.
-smooth 10 or so is often helpful.
Avoid running an image through a series of JPEG compression/decompression cycles. Image quality loss will accumulate; after ten or so
cycles the image may be noticeably worse than it was after one cycle. It's best to use a lossless format while manipulating an image, then
convert to JPEG format when you are ready to file the image away.
The -optimize option to cjpeg is worth using when you are making a "final" version for posting or archiving. It's also a win when you are
using low quality settings to make very small JPEG files; the percentage improvement is often a lot more than it is on larger files. (At
present, -optimize mode is always selected when generating progressive JPEG files.)
ENVIRONMENT
JPEGMEM
If this environment variable is set, its value is the default memory limit. The value is specified as described for the -maxmemory
switch. JPEGMEM overrides the default value specified when the program was compiled, and itself is overridden by an explicit
-maxmemory.
SEE ALSO
djpeg(1), jpegtran(1), rdjpgcom(1), wrjpgcom(1)
ppm(5), pgm(5)
Wallace, Gregory K. "The JPEG Still Picture Compression Standard", Communications of the ACM, April 1991 (vol. 34, no. 4), pp. 30-44.
AUTHOR
Independent JPEG Group
This file was modified by The libjpeg-turbo Project to include only information relevant to libjpeg-turbo, to wordsmith certain sections,
and to describe features not present in libjpeg.
BUGS
Support for GIF input files was removed in cjpeg v6b due to concerns over the Unisys LZW patent. Although this patent expired in 2006,
cjpeg still lacks GIF support, for these historical reasons. (Conversion of GIF files to JPEG is usually a bad idea anyway.)
Not all variants of BMP and Targa file formats are supported.
The -targa switch is not a bug, it's a feature. (It would be a bug if the Targa format designers had not been clueless.)
18 January 2013 CJPEG(1)