Linux and UNIX Man Pages

Test Your Knowledge in Computers #1006
Difficulty: Medium
In calculus and most other branches of mathematics beyond practical geometry, angles are universally measured in degrees.
True or False?

math(3m) [bsd man page]

```MATH(3M)																  MATH(3M)

NAME
math - introduction to mathematical library functions

DESCRIPTION
These functions constitute the C math library, libm.  The link editor searches this library under the "-lm" option.  Declarations for these
functions may be obtained from the include file <math.h>.  The Fortran math library is described in ``man 3f intro''.

LIST OF FUNCTIONS
Name	 Appears on Page    Description 	      Error Bound (ULPs)
acos	   sin.3m	inverse trigonometric function	    3
acosh	   asinh.3m	inverse hyperbolic function	    3
asin	   sin.3m	inverse trigonometric function	    3
asinh	   asinh.3m	inverse hyperbolic function	    3
atan	   sin.3m	inverse trigonometric function	    1
atanh	   asinh.3m	inverse hyperbolic function	    3
atan2	   sin.3m	inverse trigonometric function	    2
cabs	   hypot.3m	complex absolute value		    1
cbrt	   sqrt.3m	cube root			    1
ceil	   floor.3m	integer no less than		    0
copysign    ieee.3m	copy sign bit			    0
cos	   sin.3m	trigonometric function		    1
cosh	   sinh.3m	hyperbolic function		    3
drem	   ieee.3m	remainder			    0
erf	   erf.3m	error function			   ???
erfc	   erf.3m	complementary error function	   ???
exp	   exp.3m	exponential			    1
expm1	   exp.3m	exp(x)-1			    1
fabs	   floor.3m	absolute value			    0
floor	   floor.3m	integer no greater than 	    0
hypot	   hypot.3m	Euclidean distance		    1
infnan	   infnan.3m	signals exceptions
j0	   j0.3m	bessel function 		   ???
j1	   j0.3m	bessel function 		   ???
jn	   j0.3m	bessel function 		   ???
lgamma	   lgamma.3m	log gamma function; (formerly gamma.3m)
log	   exp.3m	natural logarithm		    1
logb	   ieee.3m	exponent extraction		    0
log10	   exp.3m	logarithm to base 10		    3
log1p	   exp.3m	log(1+x)			    1
pow	   exp.3m	exponential x**y		 60-500
rint	   floor.3m	round to nearest integer	    0
sin	   sin.3m	trigonometric function		    1
sinh	   sinh.3m	hyperbolic function		    3
sqrt	   sqrt.3m	square root			    1
tan	   sin.3m	trigonometric function		    3
tanh	   sinh.3m	hyperbolic function		    3
y0	   j0.3m	bessel function 		   ???
y1	   j0.3m	bessel function 		   ???
yn	   j0.3m	bessel function 		   ???

NOTES
In 4.3 BSD, distributed from the University of California in late 1985, most of the foregoing functions come in two versions, one  for  the
double-precision  "D" format in the DEC VAX-11 family of computers, another for double-precision arithmetic conforming to the IEEE Standard
754 for Binary Floating-Point Arithmetic.  The two versions behave very similarly, as should be expected from programs  more  accurate  and
robust than was the norm when UNIX was born.  For instance, the programs are accurate to within the numbers of ulps tabulated above; an ulp
is one Unit in the Last Place.  And the programs have been cured of anomalies that afflicted the older math library libm in which incidents
like the following had been reported:
sqrt(-1.0) = 0.0 and log(-1.0) = -1.7e38.
cos(1.0e-11) > cos(0.0) > 1.0.
pow(x,1.0) != x when x = 2.0, 3.0, 4.0, ..., 9.0.
pow(-1.0,1.0e10) trapped on Integer Overflow.
sqrt(1.0e30) and sqrt(1.0e-30) were very slow.
However the two versions do differ in ways that have to be explained, to which end the following notes are provided.

DEC VAX-11 D_floating-point:

This  is the format for which the original math library libm was developed, and to which this manual is still principally dedicated.  It is
the double-precision format for the PDP-11 and the earlier VAX-11 machines; VAX-11s after 1983 were provided with an  optional  "G"  format
closer to the IEEE double-precision format.  The earlier DEC MicroVAXs have no D format, only G double-precision. (Why?	Why not?)

Properties of D_floating-point:
Wordsize: 64 bits, 8 bytes.  Radix: Binary.
Precision: 56 sig.  bits, roughly like 17 sig.  decimals.
If x and x' are consecutive positive D_floating-point numbers (they differ by 1 ulp), then
1.3e-17 < 0.5**56 < (x'-x)/x <= 0.5**55 < 2.8e-17.
Range: Overflow threshold  = 2.0**127 = 1.7e38.
Underflow threshold = 0.5**128 = 2.9e-39.
NOTE:  THIS RANGE IS COMPARATIVELY NARROW.
Overflow customarily stops computation.
Underflow is customarily flushed quietly to zero.
CAUTION:
It is possible to have x != y and yet x-y = 0 because of underflow.  Similarly x > y > 0 cannot prevent either x*y = 0
or	y/x = 0 from happening without warning.
Zero is represented ambiguously.
Although 2**55 different representations of zero are accepted by the hardware, only the obvious representation is	ever  pro-
duced.  There is no -0 on a VAX.
Infinity is not part of the VAX architecture.
Reserved operands:
of  the  2**55 that the hardware recognizes, only one of them is ever produced.  Any floating-point operation upon a reserved
operand, even a MOVF or MOVD, customarily stops computation, so they are not much used.
Exceptions:
Divisions by zero and operations that overflow are invalid operations  that  customarily  stop  computation  or,  in  earlier
machines, produce reserved operands that will stop computation.
Rounding:
Every  rational  operation  (+, -, *, /) on a VAX (but not necessarily on a PDP-11), if not an over/underflow nor division by
zero, is rounded to within half an ulp, and when the rounding error is exactly half an ulp then rounding is away from 0.

Except for its narrow range, D_floating-point is one of the better computer  arithmetics  designed  in  the  1960's.   Its  properties  are
reflected  fairly  faithfully in the elementary functions for a VAX distributed in 4.3 BSD.  They over/underflow only if their results have
to lie out of range or very nearly so, and then they behave much as any rational arithmetic operation that over/underflowed  would  behave.
Similarly,  expressions like log(0) and atanh(1) behave like 1/0; and sqrt(-3) and acos(3) behave like 0/0; they all produce reserved oper-
ands and/or stop computation!  The situation is described in more detail in manual pages.
This response seems excessively punitive, so it is destined to be replaced at some time in the foreseeable  future  by  a  more
flexible	but  still  uniform scheme being developed to handle all floating-point arithmetic exceptions neatly.  See infnan(3M)
for the present state of affairs.

How do the functions in 4.3 BSD's new libm for UNIX compare with their counterparts in DEC's VAX/VMS library?  Some of  the  VMS  functions
are  a  little  faster, some are a little more accurate, some are more puritanical about exceptions (like pow(0.0,0.0) and atan2(0.0,0.0)),
and most occupy much more memory than their counterparts in libm.  The VMS codes interpolate in large table to achieve speed and  accuracy;
the libm codes use tricky formulas compact enough that all of them may some day fit into a ROM.

More important, DEC regards the VMS codes as proprietary and guards them zealously against unauthorized use.  But the libm codes in 4.3 BSD
are intended for the public domain; they may be copied freely provided their provenance is always acknowledged, and provided  users  assist
the  authors in their researches by reporting experience with the codes.  Therefore no user of UNIX on a machine whose arithmetic resembles
VAX D_floating-point need use anything worse than the new libm.

IEEE STANDARD 754 Floating-Point Arithmetic:

This standard is on its way to becoming more widely adopted than any other design for computer arithmetic.  VLSI chips that conform to some
version of that standard have been produced by a host of manufacturers, among them ...
Intel i8087, i80287      National Semiconductor  32081
Motorola 68881	     Weitek WTL-1032, ... , -1165
Zilog Z8070 	     Western Electric (AT&T) WE32106.
Other  implementations range from software, done thoroughly in the Apple Macintosh, through VLSI in the Hewlett-Packard 9000 series, to the
ELXSI 6400 running ECL at 3 Megaflops.  Several other companies have adopted the formats of IEEE 754 without, alas, adhering to	the  stan-
dard's  way  of	handling rounding and exceptions like over/underflow.  The DEC VAX G_floating-point format is very similar to the IEEE 754
Double format, so similar that the C programs for the IEEE versions of most of the elementary functions listed above could easily  be  con-
verted to run on a MicroVAX, though nobody has volunteered to do that yet.

The  codes in 4.3 BSD's libm for machines that conform to IEEE 754 are intended primarily for the National Semi. 32081 and WTL 1164/65.	To
use these codes with the Intel or Zilog chips, or with the Apple Macintosh or ELXSI 6400, is to forego the use  of  better  codes  provided
(perhaps freely) by those companies and designed by some of the authors of the codes above.  Except for atan, cabs, cbrt, erf, erfc, hypot,
j0-jn, lgamma, pow and y0-yn, the Motorola 68881 has all the functions in libm on chip, and faster and more accurate; it, Apple, the i8087,
Z8070 and WE32106 all use 64 sig.  bits.  The main virtue of 4.3 BSD's libm codes is that they are intended for the public domain; they may
be copied freely provided their provenance is always acknowledged, and provided users assist the authors in their researches  by  reporting
experience with the codes.  Therefore no user of UNIX on a machine that conforms to IEEE 754 need use anything worse than the new libm.

Properties of IEEE 754 Double-Precision:
Wordsize: 64 bits, 8 bytes.  Radix: Binary.
Precision: 53 sig.  bits, roughly like 16 sig.  decimals.
If x and x' are consecutive positive Double-Precision numbers (they differ by 1 ulp), then
1.1e-16 < 0.5**53 < (x'-x)/x <= 0.5**52 < 2.3e-16.
Range: Overflow threshold  = 2.0**1024 = 1.8e308
Underflow threshold = 0.5**1022 = 2.2e-308
Overflow goes by default to a signed Infinity.
Underflow is Gradual, rounding to the nearest integer multiple of 0.5**1074 = 4.9e-324.
Zero is represented ambiguously as +0 or -0.
Its  sign transforms correctly through multiplication or division, and is preserved by addition of zeros with like signs; but
x-x yields +0 for every finite x.	The only operations that reveal zero's sign are division by zero and copysign(x,+-0).	In
particular,  comparison  (x  >  y, x >= y, etc.)  cannot be affected by the sign of zero; but if finite x = y then Infinity =
1/(x-y) != -1/(y-x) = -Infinity.
Infinity is signed.
it persists when added to itself or to any finite number.	Its sign transforms correctly through multiplication and division,
and  (finite)/+-Infinity = +-0  (nonzero)/0  = +-Infinity.  But Infinity-Infinity, Infinity*0 and Infinity/Infinity are, like
0/0 and sqrt(-3), invalid operations that produce NaN. ...
Reserved operands:
there are 2**53-2 of them, all called NaN (Not a Number).	Some, called Signaling NaNs,  trap  any  floating-point  operation
performed	upon them; they are used to mark missing or uninitialized values, or nonexistent elements of arrays.  The rest are
Quiet NaNs; they are the default results of Invalid Operations, and propagate through subsequent arithmetic operations.  If x
!= x then x is NaN; every other predicate (x > y, x = y, x < y, ...) is FALSE if NaN is involved.
NOTE: Trichotomy is violated by NaN.
Besides  being  FALSE, predicates that entail ordered comparison, rather than mere (in)equality, signal Invalid Opera-
tion when NaN is involved.
Rounding:
Every algebraic operation (+, -, *, /, sqrt) is rounded by default to within half an ulp, and  when  the  rounding  error	is
exactly  half an ulp then the rounded value's least significant bit is zero.  This kind of rounding is usually the best kind,
sometimes provably so; for instance, for every x =  1.0,  2.0,  3.0,  4.0,  ...,  2.0**52,  we  find  (x/3.0)*3.0	==  x  and
(x/10.0)*10.0  == x and ...  despite that both the quotients and the products have been rounded.  Only rounding like IEEE 754
can do that.  But no single kind of rounding can be proved best for every circumstance, so IEEE 754 provides rounding towards
zero  or towards +Infinity or towards -Infinity at the programmer's option.  And the same kinds of rounding are specified for
Binary-Decimal Conversions, at least for magnitudes between roughly 1.0e-10 and 1.0e37.
Exceptions:
IEEE 754 recognizes five kinds of floating-point exceptions, listed below in declining order of probable importance.
Exception		   Default Result
__________________________________________
Invalid Operation	   NaN, or FALSE
Overflow		   +-Infinity
Divide by Zero	   +-Infinity
Inexact		   Rounded value
NOTE:  An Exception is not an Error unless handled badly.	What makes a class of exceptions exceptional  is  that	no  single
default  response	can be satisfactory in every instance.	On the other hand, if a default response will serve most instances
satisfactorily, the unsatisfactory instances cannot justify aborting computation every time the exception occurs.

For each kind of floating-point exception, IEEE 754 provides a Flag that is raised each time its exception is  signaled,	and  stays
raised  until  the program resets it.  Programs may also test, save and restore a flag.  Thus, IEEE 754 provides three ways by which
programs may cope with exceptions for which the default result might be unsatisfactory:

1)  Test for a condition that might cause an exception later, and branch to avoid the exception.

2)  Test a flag to see whether an exception has occurred since the program last reset its flag.

3)  Test a result to see whether it is a value that only an exception could have produced.
CAUTION: The only reliable ways to discover whether Underflow has occurred are to test whether products or quotients lie  closer
to  zero  than the underflow threshold, or to test the Underflow flag.  (Sums and differences cannot underflow in IEEE 754; if x
!= y then x-y is correct to full precision and certainly nonzero regardless of how tiny it may be.)  Products and quotients that
underflow  gradually can lose accuracy gradually without vanishing, so comparing them with zero (as one might on a VAX) will not
reveal the loss.  Fortunately, if a gradually underflowed value is destined to be added to something bigger than  the  underflow
threshold,  as  is  almost  always  the  case,  digits lost to gradual underflow will not be missed because they would have been
rounded off anyway.  So gradual underflows are usually provably ignorable.  The same cannot be said of underflows flushed to 0.

At the option of an implementor conforming to IEEE 754, other ways to cope with exceptions may be provided:

4)  ABORT.  This mechanism classifies an exception in advance as an incident to be handled by means  traditionally  associated  with
error-handling  statements  like  "ON  ERROR	GO TO ...".  Different languages offer different forms of this statement, but most
share the following characteristics:

--  No means is provided to substitute a value for the offending operation's result and resume computation from what may be the mid-
dle of an expression.  An exceptional result is abandoned.

--  In  a  subprogram  that  lacks  an error-handling statement, an exception causes the subprogram to abort within whatever program
called it, and so on back up the chain of calling subprograms until an error-handling statement is encountered or the whole task
is aborted and memory is dumped.

5)  STOP.   This mechanism, requiring an interactive debugging environment, is more for the programmer than the program.	It classi-
fies an exception in advance as a symptom of a programmer's error; the exception suspends execution as near as  it  can  to  the
offending  operation	so  that  the programmer can look around to see how it happened.  Quite often the first several exceptions
turn out to be quite unexceptionable, so the programmer ought ideally to be able to resume execution after each one as if execu-

6)  ... Other ways lie beyond the scope of this document.

The  crucial  problem for exception handling is the problem of Scope, and the problem's solution is understood, but not enough manpower was
available to implement it fully in time to be distributed in 4.3 BSD's libm.  Ideally, each elementary function should act as  if  it  were
indivisible, or atomic, in the sense that ...

i)    No exception should be signaled that is not deserved by the data supplied to that function.

ii)   Any exception signaled should be identified with that function rather than with one of its subroutines.

iii)  The internal behavior of an atomic function should not be disrupted when a calling program changes from one to another of the five or
so ways of handling exceptions listed above, although the definition of the function may be correlated intentionally  with  exception
handling.

Ideally,  every	programmer should be able conveniently to turn a debugged subprogram into one that appears atomic to its users.  But simu-
lating all three characteristics of an atomic function is still a tedious affair, entailing hosts of  tests  and  saves-restores;  work	is
under way to ameliorate the inconvenience.

Meanwhile, the functions in libm are only approximately atomic.	They signal no inappropriate exception except possibly ...
Over/Underflow
when a result, if properly computed, might have lain barely within range, and
Inexact in cabs, cbrt, hypot, log10 and pow
when it happens to be exact, thanks to fortuitous cancellation of errors.
Otherwise, ...
Invalid Operation is signaled only when
any result but NaN would probably be misleading.
Overflow is signaled only when
the exact result would be finite but beyond the overflow threshold.
Divide-by-Zero is signaled only when
a function takes exactly infinite values at finite operands.
Underflow is signaled only when
the exact result would be nonzero but tinier than the underflow threshold.
Inexact is signaled only when
greater range or precision would be needed to represent the exact result.

BUGS
When  signals are appropriate, they are emitted by certain operations within the codes, so a subroutine-trace may be needed to identify the
function with its signal in case method 5) above is in use.  And the codes all take the IEEE 754 defaults for granted; this  means  that  a
decision to trap all divisions by zero could disrupt a code that would otherwise get correct results despite division by zero.