Linux and UNIX Man Pages

Linux & Unix Commands - Search Man Pages

setstate(3) [bsd man page]

RANDOM(3)						     Library Functions Manual							 RANDOM(3)

NAME
random, srandom, initstate, setstate - better random number generator; routines for changing generators SYNOPSIS
long random() srandom(seed) int seed; char *initstate(seed, state, n) unsigned seed; char *state; int n; char *setstate(state) char *state; DESCRIPTION
Random uses a non-linear additive feedback random number generator employing a default table of size 31 long integers to return successive pseudo-random numbers in the range from 0 to (2**31)-1. The period of this random number generator is very large, approximately 16*((2**31)-1). Random/srandom have (almost) the same calling sequence and initialization properties as rand/srand. The difference is that rand(3) pro- duces a much less random sequence -- in fact, the low dozen bits generated by rand go through a cyclic pattern. All the bits generated by random are usable. For example, ``random()&01'' will produce a random binary value. Unlike srand, srandom does not return the old seed; the reason for this is that the amount of state information used is much more than a single word. (Two other routines are provided to deal with restarting/changing random number generators). Like rand(3), however, random will by default produce a sequence of numbers that can be duplicated by calling srandom with 1 as the seed. The initstate routine allows a state array, passed in as an argument, to be initialized for future use. The size of the state array (in bytes) is used by initstate to decide how sophisticated a random number generator it should use -- the more state, the better the random numbers will be. (Current "optimal" values for the amount of state information are 8, 32, 64, 128, and 256 bytes; other amounts will be rounded down to the nearest known amount. Using less than 8 bytes will cause an error). The seed for the initialization (which specifies a starting point for the random number sequence, and provides for restarting at the same point) is also an argument. Initstate returns a pointer to the previous state information array. Once a state has been initialized, the setstate routine provides for rapid switching between states. Setstate returns a pointer to the previous state array; its argument state array is used for further random number generation until the next call to initstate or setstate. Once a state array has been initialized, it may be restarted at a different point either by calling initstate (with the desired seed, the state array, and its size) or by calling both setstate (with the state array) and srandom (with the desired seed). The advantage of call- ing both setstate and srandom is that the size of the state array does not have to be remembered after it is initialized. With 256 bytes of state information, the period of the random number generator is greater than 2**69 which should be sufficient for most purposes. AUTHOR
Earl T. Cohen DIAGNOSTICS
If initstate is called with less than 8 bytes of state information, or if setstate detects that the state information has been garbled, error messages are printed on the standard error output. SEE ALSO
rand(3) BUGS
About 2/3 the speed of rand(3C). 4.2 Berkeley Distribution September 29, 1985 RANDOM(3)

Check Out this Related Man Page

RANDOM(3)						   BSD Library Functions Manual 						 RANDOM(3)

NAME
random, srandom, initstate, setstate -- better random number generator; routines for changing generators LIBRARY
Standard C Library (libc, -lc) SYNOPSIS
#include <stdlib.h> long random(void); void srandom(unsigned long seed); char * initstate(unsigned long seed, char *state, size_t n); char * setstate(char *state); DESCRIPTION
The random() function uses a non-linear additive feedback random number generator employing a default table of size 31 long integers to return successive pseudo-random numbers in the range from 0 to (2**31)-1. The period of this random number generator is very large, approxi- mately 16*((2**31)-1). The maximum value RANDOM_MAX is defined in <stdlib.h>. The random() and srandom() have (almost) the same calling sequence and initialization properties as rand(3) and srand(3). The difference is that rand(3) produces a much less random sequence -- in fact, the low dozen bits generated by rand(3) go through a cyclic pattern. All the bits generated by random() are usable. For example, 'random()&01' will produce a random binary value. Like rand(3), random() will by default produce a sequence of numbers that can be duplicated by calling srandom() with '1' as the seed. The initstate() routine allows a state array, passed in as an argument, to be initialized for future use. The size of the state array (in bytes) is used by initstate() to decide how sophisticated a random number generator it should use -- the more state, the better the random numbers will be. (Current "optimal" values for the amount of state information are 8, 32, 64, 128, and 256 bytes; other amounts will be rounded down to the nearest known amount. Using less than 8 bytes will cause an error). The seed for the initialization (which specifies a starting point for the random number sequence, and provides for restarting at the same point) is also an argument. The state array passed to initstate() must be aligned to a 32-bit boundary. This can be achieved by using a suitably-sized array of ints, and casting the array to char * when passing it to initstate(). The initstate() function returns a pointer to the previous state information array. Once a state has been initialized, the setstate() routine provides for rapid switching between states. The setstate() function returns a pointer to the previous state array; its argument state array is used for further random number generation until the next call to initstate() or setstate(). Once a state array has been initialized, it may be restarted at a different point either by calling initstate() (with the desired seed, the state array, and its size) or by calling both setstate() (with the state array) and srandom() (with the desired seed). The advantage of calling both setstate() and srandom() is that the size of the state array does not have to be remembered after it is initialized. With 256 bytes of state information, the period of the random number generator is greater than 2**69 which should be sufficient for most pur- poses. DIAGNOSTICS
If initstate() is called with less than 8 bytes of state information, or if setstate() detects that the state information has been garbled, error messages are printed on the standard error output. SEE ALSO
rand(3), srand(3), rnd(4), rnd(9) STANDARDS
The random(), srandom(), initstate() and setstate() functions conform to IEEE Std 1003.1-2008 (``POSIX.1''). HISTORY
These functions appeared in 4.2BSD. AUTHORS
Earl T. Cohen BUGS
About 2/3 the speed of rand(3). BSD
October 15, 2011 BSD
Man Page