
Windows Compound Binary File Format Specification Page 1 of 9

Windows Compound Binary File Format Specification

This document describes the on-disk format of the Compound File, used as the underpinnings of the structured storage

support for OLE 2.0.

NOTICE

This specification is provided under the Microsoft Open Specification Promise. For further
details on the Microsoft Open Specification Promise, please refer to:
http://www.microsoft.com/interop/osp/default.mspx. You are free to copy, display and perform
this specification, to make derivative works of this specification, and to distribute the
specification, however distribution rights are limited to unmodified copies of the original
specification and any redistributed copies of the specification must retain its attribution of
Microsoft’s rights in the copyright of the specification, this full notice, and the URL to the
webpage containing the most current version of the specification as provided by Microsoft.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual
property rights covering subject matter in these materials. Except as expressly provided in the
Microsoft Open Specification Promise and this notice, the furnishing of these materials does
not give you any license to these patents, trademarks, copyrights, or other intellectual
property.

The information contained in this document represents the point-in-time view of Microsoft
Corporation on the issues discussed as of the date of publication. Because Microsoft must
respond to changing market conditions, it should not be interpreted to be a commitment on
the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information
presented after the date of authoring.

Unless otherwise noted, the example companies, organizations, products, domain names,
e-mail addresses, logos, people, places and events depicted herein are fictitious, and no
association with any real company, organization, product, domain name, email address, logo,
person, place or event is intended or should be inferred.

©2007 Microsoft Corporation. All rights reserved.

Microsoft, Windows, Windows NT, Windows Server, and Windows Vista are either registered
trademarks or trademarks of Microsoft Corporation in the United States and/or other
countries.

http://www.microsoft.com/interop/osp/default.mspx

Windows Compound Binary File Format Specification Page 2 of 9

1. Overview

A Compound File is made up of a number of virtual streams. These are collections of data that behave as a linear

stream, although their on-disk format may be fragmented. Virtual streams can be user data, or they can be control

structures used to maintain the file. Note that the file itself can also be considered a virtual stream.

All allocations of space within a Compound File are done in units called sectors. The size of a sector is definable at

creation time of a Compound File, but for the purposes of this document will be 512 bytes. A virtual stream is made

up of a sequence of sectors.

The Compound File uses several different types of sector: Fat, Directory, Minifat, DIF, and Storage. A separate type

of 'sector' is a Header, the primary difference being that a Header is always 512 bytes long (regardless of the sector

size of the rest of the file) and is always located at offset zero (0). With the exception of the header, sectors of any

type can be placed anywhere within the file. The function of the various sector types is discussed below.

In the discussion below, the term SECT is used to describe the location of a sector within a virtual stream (in most

cases this virtual stream is the file itself). Internally, a SECT is represented as a ULONG.

2. Sector Types
 [4 bytes] typedef unsigned long ULONG;
 [2 bytes] typedef unsigned short USHORT;
 [2 bytes] typedef short OFFSET;
 [4 bytes] typedef ULONG SECT;
 [4 bytes] typedef ULONG FSINDEX;
 [2 bytes] typedef USHORT FSOFFSET;
 [4 bytes] typedef ULONG DFSIGNATURE;
 [1 byte] typedef unsigned char BYTE;
 [2 bytes] typedef unsigned short WORD;
 [4 bytes] typedef unsigned long DWORD;
 [2 bytes] typedef WORD DFPROPTYPE;
 [4 bytes] typedef ULONG SID;
 [16 bytes] typedef CLSID GUID;

 [8 bytes] typedef struct tagFILETIME {
 DWORD dwLowDateTime;
 DWORD dwHighDateTime;
 } FILETIME, TIME_T;

 [4 bytes] const SECT DIFSECT = 0xFFFFFFFC;
 [4 bytes] const SECT FATSECT = 0xFFFFFFFD;
 [4 bytes] const SECT ENDOFCHAIN = 0xFFFFFFFE;
 [4 bytes] const SECT FREESECT = 0xFFFFFFFF;

2.1 Header
 struct StructuredStorageHeader { // [offset from start in bytes, length in bytes]
 BYTE _abSig[8]; // [000H,08] {0xd0, 0xcf, 0x11, 0xe0, 0xa1, 0xb1, 0x1a, 0xe1} for current version,

 // was {0x0e, 0x11, 0xfc, 0x0d, 0xd0, 0xcf, 0x11, 0xe0} on old, beta 2 files (late ’92)
 // which are also supported by the reference implementation
 CLSID _clid; // [008H,16] class id (set with WriteClassStg, retrieved with GetClassFile/ReadClassStg)
 USHORT _uMinorVersion; // [018H,02] minor version of the format: 33 is written by reference implementation
 USHORT _uDllVersion; // [01AH,02] major version of the dll/format: 3 is written by reference implementation
 USHORT _uByteOrder; // [01CH,02] 0xFFFE: indicates Intel byte-ordering
 USHORT _uSectorShift; // [01EH,02] size of sectors in power-of-two (typically 9, indicating 512-byte sectors)
 USHORT _uMiniSectorShift; // [020H,02] size of mini-sectors in power-of-two (typically 6, indicating 64-byte mini-sectors)
 USHORT _usReserved; // [022H,02] reserved, must be zero
 ULONG _ulReserved1; // [024H,04] reserved, must be zero
 ULONG _ulReserved2; // [028H,04] reserved, must be zero
 FSINDEX _csectFat; // [02CH,04] number of SECTs in the FAT chain
 SECT _sectDirStart; // [030H,04] first SECT in the Directory chain
 DFSIGNATURE _signature; // [034H,04] signature used for transactionin: must be zero. The reference implementation
 // does not support transactioning
 ULONG _ulMiniSectorCutoff; // [038H,04] maximum size for mini-streams: typically 4096 bytes

Windows Compound Binary File Format Specification Page 3 of 9

 SECT _sectMiniFatStart; // [03CH,04] first SECT in the mini-FAT chain
 FSINDEX _csectMiniFat; // [040H,04] number of SECTs in the mini-FAT chain
 SECT _sectDifStart; // [044H,04] first SECT in the DIF chain
 FSINDEX _csectDif; // [048H,04] number of SECTs in the DIF chain
 SECT _sectFat[109]; // [04CH,436] the SECTs of the first 109 FAT sectors
 };

The Header contains vital information for the instantiation of a Compound File. Its total length is 512 bytes. There

is exactly one Header in any Compound File, and it is always located beginning at offset zero in the file.

2.2 Fat Sectors

The Fat is the main allocator for space within a Compound File. Every sector in the file is represented within the Fat

in some fashion, including those sectors that are unallocated (free). The Fat is a virtual stream made up of one or

more Fat Sectors.

Fat sectors are arrays of SECTs that represent the allocation of space within the file. Each stream is represented in the

Fat by a chain, in much the same fashion as a DOS file-allocation-table (FAT). To elaborate, the set of Fat Sectors

can be considered together to be a single array -- each cell in that array contains the SECT of the next sector in the

chain, and this SECT can be used as an index into the Fat array to continue along the chain. Special values are

reserved for chain terminators (ENDOFCHAIN = 0xFFFFFFFE), free sectors (FREESECT = 0xFFFFFFFF), and sectors that

contain storage for Fat Sectors (FATSECT = 0xFFFFFFFD) or DIF Sectors (DIFSECT = 0xFFFFFFC), which are not

chained in the same way as the others.

The locations of Fat Sectors are read from the DIF (Double-indirect Fat), which is described below. The Fat is

represented in itself, but not by a chain – a special reserved SECT value (FATSECT = 0xFFFFFFFD) is used to mark

sectors allocated to the Fat.

A SECT can be converted into a byte offset into the file by using the following formula: SECT << ssheader._uSectorShift

+ sizeof(ssheader). This implies that sector 0 of the file begins at byte offset 512, not at 0.

2.3 MiniFat Sectors

Since space for streams is always allocated in sector-sized blocks, there can be considerable waste when storing

objects much smaller than sectors (typically 512 bytes). As a solution to this problem, we introduced the concept of

the MiniFat. The MiniFat is structurally equivalent to the Fat, but is used in a different way. The virtual sector size

for objects represented in the Minifat is 1 << ssheader._uMiniSectorShift (typically 64 bytes) instead of 1 <<

ssheader._uSectorShift (typically 512 bytes). The storage for these objects comes from a virtual stream within the

Multistream (called the Ministream).

The locations for MiniFat sectors are stored in a standard chain in the Fat, with the beginning of the chain stored in the

header.

A Minifat sector number can be converted into a byte offset into the ministream by using the following formula:

SECT << ssheader._uMiniSectorShift. (This formula is different from the formula used to convert a SECT into a byte

offset in the file, since no header is stored in the Ministream)

The Ministream is chained within the Fat in exactly the same fashion as any normal stream. It is referenced by the

first Directory Entry (SID 0).

3 5 1E

Pointer in

from Directory

Chaining

Windows Compound Binary File Format Specification Page 4 of 9

2.4 DIF Sectors

The Double-Indirect Fat is used to represent storage of the Fat. The DIF is also represented by an array of SECTs,

and is chained by the terminating cell in each sector array (see the diagram above). As an optimization, the first 109

Fat Sectors are represented within the header itself, so no DIF sectors will be found in a small (< 7 MB) Compound

File.

The DIF represents the Fat in a different manner than the Fat represents a chain. A given index into the DIF will

contain the SECT of the Fat Sector found at that offset in the Fat virtual stream. For instance, index 3 in the DIF would

contain the SECT for Sector #3 of the Fat.

The storage for DIF Sectors is reserved in the Fat, but is not chained there (space for it is reserved by a special SECT

value , DIFSECT=0xFFFFFFFC). The location of the first DIF sector is stored in the header.

A value of ENDOFCHAIN=0xFFFFFFFE is stored in the pointer to the next DIF sector of the last DIF sector.

2.5 Directory Sectors
 typedef enum tagSTGTY {
 STGTY_INVALID = 0,
 STGTY_STORAGE = 1,
 STGTY_STREAM = 2,
 STGTY_LOCKBYTES = 3,
 STGTY_PROPERTY = 4,
 STGTY_ROOT = 5,
 } STGTY;

 typedef enum tagDECOLOR {
 DE_RED = 0,
 DE_BLACK = 1,
 } DECOLOR;

 struct StructuredStorageDirectoryEntry { // [offset from start in bytes, length in bytes]
 BYTE _ab[32*sizeof(WCHAR)]; // [000H,64] 64 bytes. The Element name in Unicode, padded with zeros to
 // fill this byte array
 WORD _cb; // [040H,02] Length of the Element name in characters, not bytes
 BYTE _mse; // [042H,01] Type of object: value taken from the STGTY enumeration
 BYTE _bflags; // [043H,01] Value taken from DECOLOR enumeration.
 SID _sidLeftSib; // [044H,04] SID of the left-sibling of this entry in the directory tree
 SID _sidRightSib; // [048H,04] SID of the right-sibling of this entry in the directory tree
 SID _sidChild; // [04CH,04] SID of the child acting as the root of all the children of this
 // element (if _mse=STGTY_STORAGE)
 GUID _clsId; // [050H,16] CLSID of this storage (if _mse=STGTY_STORAGE)
 DWORD _dwUserFlags; // [060H,04] User flags of this storage (if _mse=STGTY_STORAGE)
 TIME_T _time[2]; // [064H,16] Create/Modify time-stamps (if _mse=STGTY_STORAGE)
 SECT _sectStart; // [074H,04] starting SECT of the stream (if _mse=STGTY_STREAM)
 ULONG _ulSize; // [078H,04] size of stream in bytes (if _mse=STGTY_STREAM)
 DFPROPTYPE _dptPropType; // [07CH,02] Reserved for future use. Must be zero.
 };

The Directory is a structure used to contain per-stream information about the streams in a Compound File, as well as

to maintain a tree-styled containment structure. It is a virtual stream made up of one or more Directory Sectors. The

Directory is represented as a standard chain of sectors within the Fat. The first sector of the Directory chain (the Root

Directory Entry)

Pointer to next DIF sector

DIF Sector

Pointers to FAT sectors

Windows Compound Binary File Format Specification Page 5 of 9

Each level of the containment hierarchy (i.e. each set of siblings) is represented as a red-black tree. The parent of this

set of sibilings will have a pointer to the top of this tree. This red-black tree must maintain the following conditions in

order for it to be valid:

 1. The root node must always be black. Since the root directory (see below) does not have siblings, it's color is

irrelevant and may therefore be either red or black.

 2. No two consecutive nodes may both be red.

 3. The left child must always be less than the right child. This relationship is defined as:

  A node with a shorter name is less than a node with a longer name (i.e. compare length of the name)

  For nodes with the same length names, compare the two names.

The simplest implementation of the above invariants would be to mark every node as black, in which case the tree is

simply a binary tree.

A Directory Sector is an array of Directory Entries, a structure represented in the diagram below. Each user stream

within a Compound File is represented by a single Directory Entry. The Directory is considered as a large array of

Directory Entries. It is useful to note that the Directory Entry for a stream remains at the same index in the Directory

array for the life of the stream – thus, this index (called an SID) can be used to readily identify a given stream.

The directory entry is then padded out with zeros to make a total size of 128 bytes.

Directory entries are grouped into blocks of four to form Directory Sectors.

2.5.1 Root Directory Entry

The first sector of the Directory chain (also referred to as the first element of the Directory array, or SID 0) is known as

the Root Directory Entry and is reserved for two purposes: First, it provides a root parent for all objects stationed at

the root of the multi-stream. Second, its function is overloaded to store the size and starting sector for the

Mini-stream.

The Root Directory Entry behaves as both a stream and a storage. All of the fields in the Directory Entry are valid for

the root. The Root Directory Entry’s Name field typically contains the string “RootEntry” in Unicode, although some

versions of structured storage (particularly the preliminary reference implementation and the Macintosh version) store

only the first letter of this string, “R” in the name. This string is always ignored, since the Root Directory Entry is

known by its position at SID 0 rather than by its name, and its name is not otherwise used. New implementations should

write “RootEntry” properly in the Root Directory Entry for consistency and support manipulating files created with

only the “R” name.

2.5.2 Other Directory Entries

Non-root directory entries are marked as either stream (STGTY_STREAM) or storage (STGTY_STORAGE) elements.

Storage elements have a _clsid, _time[], and _sidChild values; stream elements may not. Stream elements have valid

_sectStart and _ulSize members, whereas these fields are set to zero for storage elements (except as noted above for the

Root Directory Entry).

To determine the physical file location of actual stream data from a stream directory entry, it is necessary to determine

which FAT (normal or mini) the stream exists within. Streams whose _ulSize member is less than the _ulMiniSectorCutoff

value for the file exist in the ministream, and so the _startSect is used as an index into the MiniFat (which starts at

_sectMiniFatStart) to track the chain of mini-sectors through the mini-stream (which is, as noted earlier, the standard

(non-mini) stream referred to by the Root Directory Entry’s _sectStart value). Streams whose _ulSize member is greater

than the _ulMiniSectorCutoff value for the file exist as standard streams – their _sectStart value is used as an index into the

standard FAT which describes the chain of full sectors containing their data).

2.6 Storage Sectors

Storage sectors are simply collections of arbitrary bytes. They are the building blocks of user streams, and no

restrictions are imposed on their contents. Storage sectors are represented as chains in the Fat, and each storage chain

(stream) will have a single Directory Entry associated with it.

3. Examples

This section contains a hexadecimal dump of an example structured storage file to clarify the binary file format.

Windows Compound Binary File Format Specification Page 6 of 9

3.1 Sector 0: Header
 _abSig = DOCF 11E0 A1B1 1AE1

 _clid = 0000 0000 0000 0000 0000 0000 0000 0000

 _uMinorVersion = 003B

 _uDllVersion = 3

 _uByteOrder = FFFE (Intel byte order)

 _uSectorShift = 9 (512 bytes)

 _uMiniSectorShift = 6 (64 bytes)

 _usReserved = 0000

 _ulReserved1 = 00000000

 _ulReserved2 = 00000000

 _csectFat = 00000001

 _sectDirStart = 00000001

 _signature = 00000000

 _ulMiniSectorCutoff = 00001000 (4096 bytes)

 _sectMiniFatStart = 00000002

 _csectMiniFat = 00000001

 _sectDifStart = FFFFFFFE (no DIF, file is < 7Mb)

 _csectDIF = 00000000

 _sectFat[] = 00000000 FFFFFFFF . . . (continues with FFFFFFFF)

 000000: D0CF 11E0 A1B1 1AE1 0000 0000 0000 0000

 000010: 0000 0000 0000 0000 3B00 0300 FEFF 0900 ;.......

 000020: 0600 0000 0000 0000 0000 0000 0100 0000

 000030: 0100 0000 0000 0000 0010 0000 0200 0000

 000040: 0100 0000 FEFF FFFF 0000 0000 0000 0000

 000050: FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF

 . . .

 0001F0: FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF

3.2 SECT 0: First (Only) FAT Sector
 SECT 0: FFFFFFFD = FATSECT: marks this sector as a FAT sector.

 Referred to in header by _sectFat[0]

 SECT 1: FFFFFFFE = ENDOFCHAIN: marks the end of the directory chain,

 referred to in header by _sectDirStart

 SECT 2: FFFFFFFE = ENDOFCHAIN: marks the end of the mini-fat, referred to

 in header by _sectMiniFatStart

 SECT 3: 00000004 = pointer to the next sector in the “Stream 1” data. This sector is

 the first sector of “Stream 1”, it is referred to by the Directory Entry

 SECT 4: ENDOFCHAIN (0xFFFFFFFE): marks the end of the “Stream 1” stream data.

 Further Entries are empty (FREESECT = 0xFFFFFFFF)

 000200: FDFF FFFF FEFF FFFF FEFF FFFF 0400 0000

 000210: FEFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF

 . . .

 0003F0: FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF

3.3 SECT 1: First (Only) Directory Sector
 SID 0: Root SID: Root Name = "R"

 SID 1: Element 1 SID: Name = "Storage 1"

 SID 2: Element 2 SID: Name = "Stream 1"

 SID 3: Unused

3.3.1 SID 0: Root Directory Entry

 _ab = ("R") (this should be “Root Entry”)

 _cb = 0004 (4 bytes, includes double-null terminator)

 _mse = 05 (STGTY_ROOT)

 _bflags = 00 (DE_RED)

 _sidLeftSib = FFFFFFFF (none)

 _sidRightSib = FFFFFFFF (none)

 _sidChild = 00000001 (SID 1: “Storage 1”)

 _clsid = 0067 6156 54C1 CE11 8553 00AA 00A1 F95B

 _dwUserFlags = 00000000 (n/a for STGTY_ROOT)

 _time[0] = CreateTime = 0000 0000 0000 0000 (none set)

 _time[1] = ModifyTime = 801E 9213 4BB4 BA01 (??)

Windows Compound Binary File Format Specification Page 7 of 9

 _sectStart = 00000003 (starting sector of MiniStream)

 _ulSize = 00000240 (length of MiniStream in bytes)

 _dptPropType = 0000 (n/a)

 000400: 0052 0000 0000 0000 0000 0000 0000 0000 .R..............

 000410: 0000 0000 0000 0000 0000 0000 0000 0000

 000420: 0000 0000 0000 0000 0000 0000 0000 0000

 000430: 0000 0000 0000 0000 0000 0000 0000 0000

 000440: 0400 0500 FFFF FFFF FFFF FFFF 0100 0000

 000450: 0067 6156 54C1 CE11 8553 00AA 00A1 F95B .gaVT....S.....[

 000460: 0000 0000 0000 0000 0000 0000 801E 9213

 000470: 4BB4 BA01 0300 0000 4002 0000 0000 0000 K.......@.......

3.3.2 SID 1: “Storage 1”

 _ab = ("Storage 1")

 _cb = 0014 (20 bytes, including double-null terminator)

 _mse = 01 (STGTY_STORAGE)

 _bflags = 01 (DE_BLACK)

 _sidLeftSib = FFFFFFFF (none)

 _sidRightSib = FFFFFFFF (none)

 _sidChild = 00000002 (SID 2: “Stream 1”)

 _clsid = 0000 0000 0000 0000 0000 0000 0000 0000 (none set)

 _dwUserFlags = 00000000 (none set)

 _time[0] = CreateTime = 00000000 00000000 (none set)

 _time[1] = ModifyTime = 00000000 00000000 (none set)

 _sectStart = 00000000 (n/a)

 _ulSize = 00000000 (n/a)

 _dptPropType = 0000 (n/a)

 000480: 5300 7400 6F00 7200 6100 6700 6500 2000 S.t.o.r.a.g.e. .

 000490: 3100 0000 0000 0000 0000 0000 0000 0000 1...............

 0004A0: 0000 0000 0000 0000 0000 0000 0000 0000

 0004B0: 0000 0000 0000 0000 0000 0000 0000 0000

 0004C0: 1400 0101 FFFF FFFF FFFF FFFF 0200 0000

 0004D0: 0061 6156 54C1 CE11 8553 00AA 00A1 F95B .aaVT....S.....[

 0004E0: 0000 0000 0088 F912 4BB4 BA01 801E 9213 K.......

 0004F0: 4BB4 BA01 0000 0000 0000 0000 0000 0000 K...............

3.3.3 SID 2: “Stream 1”

 _ab = ("Stream 1")

 _cb = 0012 (18 bytes, including double-null terminator)

 _mse = 02 (STGTY_STREAM)

 _bflags = 01 (DE_BLACK)

 _sidLeftSib = FFFFFFFF (none)

 _sidRightSib = FFFFFFFF (none)

 _sidChild = FFFFFFFF (n/a for STGTY_STREAM)

 _clsid = 0000 0000 0000 0000 0000 0000 0000 0000 (n/a)

 _dwUserFlags = 00000000 (n/a)

 _time[0] = CreateTime = 00000000 00000000 (n/a)

 _time[1] = ModifyTime = 00000000 00000000 (n/a)

 _startSect = 00000000 (SECT in mini-fat, since _ulSize is smaller than _ulMiniSectorCutoff)

 _ulSize = 00000220 (< ssheader._ulMiniSectorCutoff, so _sectStart is in Mini)

 _dptPropType = 0000 (n/a)

 000500: 5300 7400 7200 6500 6100 6D00 2000 3100 S.t.r.e.a.m. .1.

 000510: 0000 0000 0000 0000 0000 0000 0000 0000

 000520: 0000 0000 0000 0000 0000 0000 0000 0000

 000530: 0000 0000 0000 0000 0000 0000 0000 0000

 000540: 1200 0201 FFFF FFFF FFFF FFFF FFFF FFFF

 000550: 0000 0000 0000 0000 0000 0000 0000 0000

 000560: 0000 0000 0000 0000 0000 0000 0000 0000

 000570: 0000 0000 0000 0000 2002 0000 0000 0000

 000580: 0000 0000 0000 0000 0000 0000 0000 0000

3.3.4 SID 3: Unused

 000590: 0000 0000 0000 0000 0000 0000 0000 0000

 0005A0: 0000 0000 0000 0000 0000 0000 0000 0000

Windows Compound Binary File Format Specification Page 8 of 9

 0005B0: 0000 0000 0000 0000 0000 0000 0000 0000

 0005C0: 0000 0000 FFFF FFFF FFFF FFFF FFFF FFFF

 0005D0: 0000 0000 0000 0000 0000 0000 0000 0000

 0005E0: 0000 0000 0000 0000 0000 0000 0000 0000

 0005F0: 0000 0000 0000 0000 0000 0000 0000 0000

3.4 SECT 3: MiniFat Sector
 SECT 0: 00000001: pointer to the second sector in the “Stream 1” data. This sector is

 the first sector of “Stream 1”, it is referred to by _sectStart of SID 2

 SECT 1: 00000002: pointer to the third sector in the “Stream 1” data. This sector is

 the second sector of “Stream 1”, it is referred to in MiniFat SECT 0, above.

 . . .

 SECT 8: FFFFFFFE = ENDOFCHAIN: marks the end of the “Stream 1” data.

 Further Entries are empty (FREESECT = 0xFFFFFFFF)

 000600: 0100 0000 0200 0000 0300 0000 0400 0000

 000610: 0500 0000 0600 0000 0700 0000 0800 0000

 000620: FEFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF

 . . .

 0007F0: FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF

3.5 SECT 4: MiniStream (Data of “Stream 1”)
 // referred to by SECTs in MiniFat of SECT 3, above

 000800: 4461 7461 2066 6F72 2073 7472 6561 6D20 Data for stream

 000810: 3144 6174 6120 666F 7220 7374 7265 616D 1Data for stream

 000820: 2031 4461 7461 2066 6F72 2073 7472 6561 1Data for strea

 . . .

 000A00: 7461 2066 6F72 2073 7472 6561 6D20 3144 ta for stream 1D

 000A10: 6174 6120 666F 7220 7374 7265 616D 2031 ata for stream 1

 // data ends at 000A1F, MiniSector is filled to the end with known data (a copy of the header or

 // FFFFFFF to prevent random disk or memory contents from contaminating the file on-disk.

 000A20: 0000 0000 0000 0000 3B00 03FF FE00 0900 ;.......

 000A30: 0600 0000 0000 0000 0000 0000 0000 0100

 000A40: D0CF 11E0 A1B1 1AE1 0000 0000 0000 0000

 000A50: 0000 0000 0000 0000 003B 0003 FFFE 0009 ;......

 000A60: 0006 0000 0000 0000 0000 0000 0000 0001

 000A70: 0000 0001 0000 0000 0000 1000 0000 0002

 000A80: 0000 0001 FFFF FFFE 0000 0000 0000 0000

 000A90: FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF

 . . .

 000BF0: FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF

Index
C

chain, 2

D

DECOLOR, 3

DFPROPTYPE, 1

DFSIGNATURE, 1

DIF, 3

DIFSECT, 1

Directory, 3

Double-Indirect Fat, 3

E

ENDOFCHAIN, 1

F

Fat, 2

FATSECT, 1

FREESECT, 1

FSINDEX, 1

FSOFFSET, 1

M

MiniFat, 2

Ministream, 2

O

OFFSET, 1

R

Root Directory Entry, 4

S

SECT, 1

sector, 1

SID, 1, 4

STGTY, 3

V

virtual stream, 1

