
Korn Shell Custom Builtins
Finnbarr P. Murphy

(fpm@un-ix.com)

The majority of UNIX shells are not designed for extensibility or embeddability. The
current exception is the 1993 version of the Korn shell, written by David Korn and
generally referred to as ksh93, which includes support for runtime linking of libraries and
custom builtins and accessing shell internals.

It is very difficult, however, to find good information or examples of how to implement
ksh93 custom builtins. The source code to ksh93 has virtually no comments and the
supplied documentation is extremely terse and often conflicts with other parts of the
documentation or the source code itself.

This article is an attempt to show by example how to write your own ksh93 custom
builtins. You are expected to be reasonably proficient in the C language and the use of
the gcc compiler/linker. However, before we start, it is important to note that custom
builtins can only be implemented on operating systems that support dynamic loading of
shared objects into the current running process since, internally, a custom builtin is
invoked as a C routine by ksh93. Fortunately most modern operating systems provide
this feature via the dlopen(), dlsym(), dlerror() and dlclose() APIs.

Why bother implementing ksh93 custom builtins? The answer lies in fact that custom
builtins are inherently much faster and require less system resources than an equivalent
routine which uses other standalone commands and utilities. A custom builtin executes
in the same process as the shell, i.e. it does not create a separate sub-process using fork()
and exec(). Thus a significant improvement in performance can occur since the process
creation overhead is eliminated. The author of ksh93, Dave Korn, reported that on a SUN
OS 4.1 the time to run wc on a file of about 1000 bytes was about 50 times less when
using the wc built-in command.

In most cases ksh93 comes with the libcmd library which contains the custom builtins as
listed in the following table:

basename cmp dirname head mkdir rev Tee
Cat comm expr Id mkfifo rm Tty
chgrp Cp fmt Join mv rmdir Uname
chmod cut fold Ln paste sty Uniq
chown date getconf logname pathchk tail Wc

The above custom builtins were written so as to have no side effects on ksh93 or its
environment, and are identical to that of an equivalent stand-alone command. Using these
builtins has the advantage that startup time is significantly reduced and shell internals are
accessable.

Korn Shell Custom Builtins

Finnbarr P. Murphy 5/18/2008 2 of 15

Custom builtins that have side effects on ksh93 or its environment can be also written.
This is usually done to extend an application domain. For example, there are two
extensions to ksh93 that can be used to write GUI applications as shell script. One is
dtksh (Desktop Korn Shell) which was written by Steve Pendergrast at Novell and is
included with the Common Desktop Environment, CDE. The other is tksh which was
written by Dave Korn’s son, Jeffrey. tksh implements the tcl scripting language as an
extension to ksh93 so that both tcl and ksh scripts can run in the same address space.

There are two ways to create and install ksh93 custom builtins. In both cases, the custom
builtin is loaded into ksh93 using the builtin command. Which method you use is entirely
up to you. The easiest way is to write a shared library containing one or more functions
whose names are b_xxxx where xxxx is the name of the custom builtin. The function
b_xxxx takes three arguments. The first two are the same as for the main() function in a C
program. The third argument is a pointer which points to the current shell context. The
second way is to write a shared library containing a function named lib_init(). This
function is called with an argument of 0 when the shared library is loaded. This function
can add custom builtins with the sh_addbuiltin()function.

I believe that the best way to learn about a new feature is to actually write code which
uses the new feature. Following are a number of examples which demonstrate how to
write custom builtins, starting with a few relatively simple examples and then some more
complex examples which access and modify ksh93 internals. All examples were written
and tested using ksh93 version M 93s+ 2008-01-31 and CentOS 5.0 but should compile
and work on any modern UNIX or Linux operating system.

Example 1

Suppose you wish to write a simple custom builtin called hello which takes one argument
<string> and outputs “hello there <string>” to stdout.

/*
 * Example 1 – hello. Based on a published example by David
Korn
 *
*/

#include <stdio.h>

int
b_hello(int argc, char *argv[], void *extra)
{
 if (argc != 2) {
 fprintf(stderr,"Usage: hello arg\n");
 return(2);
 }

 printf("Hello there %s\n",argv[1]);
 return(0);

Korn Shell Custom Builtins

Finnbarr P. Murphy 5/18/2008 3 of 15

}

Next compile hello.c and create a shared library libhello.so containing hello:

$ gcc -fPIC -g -c hello.c
$ gcc -shared -W1,-soname,libhello.so -o libhello.so hello.o –lc

Some operating systems (Solaris Intel for example) do not require you to build a shared
library and support the direct loading of hello.o. However the majority of operating
systems require you to create a shared library as we have done for this example. Note the
use of the –fPIC flag to indicate position independent code should be produced. Unlike
relocatable code, position independent code can be copied to any memory location
without modification and executed.

To actually use the hello custom builtin, you must make it available to ksh93 using the
ksh93 builtincommand.

$ builtin -f ./libhello.so hello

If you are unfamiliar with the builtin command, you can type builtin –man or builtin –
help for more information or read the ksh93 man page.

You can then use the hello custom builtin just like you would use any other command or
shell feature:

$ hello joe
Hello there joe
$ hello "joe smith"
Hello there joe smith
$ hello
Usage: hello arg
$

Note that the hello custom builtin will show up when you list builtins using the builtin
command

$ builtin
 …..
 hello

 ……
 $

but not when you list special builtins using the builtin –s option.

To remove the hello builtin, use the builtin –d option:

$ builtin –d hello
$ hello joe
/bin/ksh93: hello: not found [No such file or directory]
$

Korn Shell Custom Builtins

Finnbarr P. Murphy 5/18/2008 4 of 15

Removing a custom builtin does not necessarily release the associated shared library.

Internally hello named b_hello() and takes 3 arguments. As previously discussed custom
builtins are generally required to start with “b_” (There is an exception which will be
discussed in a later example.) The arguments argc and argv act just like in a main()
function. The third argument is the current context of ksh93 and is generally not used as
another mechanism, sh_getinterp(), is provided to access the current content.

Instead of exit, use return to terminate a custom builtin. The return value becomes the
exit status of the builtin and can be queried using $? A return value of 0 indicates
success with > 0 indicating failure. If you allocate any resources such as memory, all
such resources used must be carefully freed before terminating the custom builtin.

Custom builtins can call functions from the standard C library, the AST (Advanced
Software Technology) libast library, interface functions provided by ksh93, and your own
C libraries. You should avoid using any global symbols beginning with sh_, .nv_, and ed_
or BSH_since these are reserved for use by ksh93 itself.

If you move libhello.so to where the shared libraries normally reside for your particular
operating system, typically /usr/lib, you can load the hello custom builtin as follows

$ builtin –f hello hello

as ksh93 automatically adds a lib prefix and .so suffix to the name of the library specified
using the builtin –f option.

It is often desirable to automatically load a custom builtin the first time that it is
referenced. For example, the first time the custom builtin hello is invoked, ksh93 should
load and execute it, whereas for subsequent invocations ksh93 should just execute the
hello custom builtin. This can be done by creating a file named hello as follows:

 function hello
 {

 unset -f hello
 builtin -f /home/joe/libhello.so hello
 hello "$@"
 }

This file must to be placed in a directory that is in your FPATH environmental variable.
In addition, the full pathname to the shared library containing the hello custom builtin
should be specified so that the run time loader can find this shared library no matter
where hello is invoked.

There are alternative ways to locating and invoking builtins using a .paths file. See the
ksh93 man page for further information.

Korn Shell Custom Builtins

Finnbarr P. Murphy 5/18/2008 5 of 15

Example 2

Here is another simple example of a custom builtin. This custom builtin uppercases the
first character of the string argument.

/*
 * Example 2 – firstcap. Uppercase first character of string
 *
*/

#include <stdio.h>
#include <ctype.h>

int
b_firstcap(int argc, char *argv[], void *extra)
{
 int c;
 char *s;

 if (argc != 2) {
 fprintf(stderr,"Usage: firstcap arg\n");
 return(2);
 }

 s = argv[1];
 c = *s++;

 printf("%c%s\n", toupper(c), s);

 return(0);
}

Assuming you created a library called libfirstcap.so and placed this library in the default
directory for shared libraries you can load and use this custom builtin as follows.

$ builtin -f firstcap firstcap
$ firstcap joe
Joe
$ firstcap united
United
$

Example 3

This example extends the previous examples in a number of ways. First of all the AST
header <shell.h> is included. Life as a custom builtin developer is much easier when this
header is included. It ensures that other necessary AST headers are included so that C
prototypes are provided and calls to stdio routines are re-mapped to use the equivalent but
safer sfio (AST Safe Fast Input Output) routines. The maintainers of ksh93 regard the
stdio routines as having too many weaknesses to be used safely by ksh93.

Korn Shell Custom Builtins

Finnbarr P. Murphy 5/18/2008 6 of 15

Second, if your shared library contains a function named lib_init(), this function is
invoked with argument value of 0 when the shared library is loaded. As previously
discussed, lib_init() can load builtins using sh_addbuiltin(). In this case there is no
restriction on the name of a custom builtin function name. Note that in the current
version of ksh93, lib_init() can take a second argument, void *context, but this seems to
do nothing.

/*
 * Example 3 – hello, goodbye. Use <shell.h> and lib_init
 *
*/

#include <ast/shell.h>

int
fpm_goodbye(int argc, char *argv[], void *extra)
{
 if (argc != 2) {
 printf("Usage: goodbye arg\n");
 return(2);
 }

 printf("Goodbye %s\n", argv[1]);

 return(0);
}

int
b_hello(int argc, char *argv[], void *extra
{
 if (argc != 2) {
 printf("Usage: hello arg\n");
 return(2);
 }

 printf("Hello %s\n", argv[1]);

 return(0);
}

void
lib_init(int c, void *context)
{
 /* automatically load goodbye when library is loaded */
 sh_addbuiltin("goodbye", fpm_goodbye, 0);
}

Assuming you built a library called libhello.so which contains the above code, and placed
this library in the shared library location, you can access the two custom builtins, hello
and goodbye as follows:

$ builtin –f hello hello
$ hello Joe
Hello Joe

Korn Shell Custom Builtins

Finnbarr P. Murphy 5/18/2008 7 of 15

$ goodbye Joe
Goodbye Joe
$

To remove both custom builtins at the same time you must specify both on the command
line as follows

$ builtin –d hello –d goodbye
$

Note that goodbye was not named internally as b_goodbye as in previous examples but as
fpm_goodbye. The “b_” function prefix naming requirement is relaxed when a custom
builtin is loaded via lib_int() and sh_addbuiltin().

Example 4

If for some reason you do not wish to use the AST sfio routines, you should include the
header <shcmd.h> and then call LIB_INIT(context)which will initialize the shell context
so that ksh93 knows that you are not using the sfio routines.

/*
 * Example 4 – hello, goodbye. Use <shcmd.h> and LIB_INIT
 *
 */

#include <ast/shcmd.h>
#include <stdio.h>

int
b_goodbye(int argc, char *argv[], void *extra)
{
 if (argc != 2) {
 printf("Usage: goodbye arg\n");
 return(2);
 }

 printf("Goodbye %s\n", argv[1]);

 return(0);
}

int
b_hello(int argc, char *argv[], void *extra)
{
 if (argc != 2) {
 printf("Usage: hello arg\n");
 return(2);
 }

 printf("Hello %s\n", argv[1]);

 return(0);

Korn Shell Custom Builtins

Finnbarr P. Murphy 5/18/2008 8 of 15

}

void
lib_init(int c, void *context)
{
 LIB_INIT(context);

 sh_addbuiltin("hello", b_hello, 0);
 sh_addbuiltin("goodbye", b_goodbye, 0);
}

Assuming that you build a shared library called libhello.so, both custom builtins are
automatically loaded when the shared library is loaded i.e.

$ builtin –f libhello.so

Example 5

One of the advantages of ksh93 over other shells is the fact that online help is provided
for most commands using -?, –man or –help. Self-documenting code is supported in
custom builtins but is very poorly documented. All custom builtins can generate their
own manual page in several formats. While this documentation takes up space in the
shared library and loaded image, the benefits outweigh the cost in my opinion.

The following example shows how to include built-in help and documentation for a
custom builtin.

#include <ast/shell.h>

#define SH_DICT "libgoodbye"

static const char usage_goodbye[] =
 "[-?\n@(#)$Id: goodbye 2008-04-06 $\n]"
 "[-author?Finnbarr P. Murphy <fpmATun-ixDOTcom>]"
 "[-licence?http://www.opensource.org/licenses/cpl1.0.txt]"
 "[+NAME?goodbye - output goodbye message]"
 "[+DESCRIPTION?\bgoodbye\b outputs either a short or
extended"
 "message to stdout.]"
 "[x:xtended?Output extended message]"
 "\n"
 "\nname\n"
 "\n"
 "[+EXIT STATUS?] {"
 "[+0?Success.]"
 "[+>0?An error occurred.]"
 "}"
 "[+SEE ALSO?\bprint\b(1), \becho\b(1)]"
;

int
b_goodbye (int argc, char *argv[], void *extra)

Korn Shell Custom Builtins

Finnbarr P. Murphy 5/18/2008 9 of 15

{
 register int n, extend=0;

 while (n = optget(argv, usage_goodbye)) switch(n) {
 case 'x':
 extend=1;
 break;
 case ':':
 error(2, "%s", opt_info.arg);
 break;
 case '?':
 errormsg(SH_DICT,
 ERROR_usage(2), "%s", opt_info.arg);
 break;
 }

 argc -= opt_info.index;
 argv += opt_info.index;

 if (argc != 1)
 errormsg(SH_DICT,
 ERROR_usage(2), "%s", optusage((char *)0));

 if (extend)
 sfprintf(sfstdout, "Goodbye for now %s\n", *argv);
 else
 sfprintf(sfstdout, "Goodbye %s\n", *argv);

 return(0);
}

void
lib_init(int c, void *context)
{
 sh_addbuiltin("goodbye", b_goodbye, 0);
}

Example 6

To prevent memory leaks in your custom builtins you should avoid using malloc() and
calloc() and similar routines. The preferred way to obtain, free and manage memory
space when required in a custom builtin is to use the libast stk(3) routines. Memory leaks
can arise when a custom builtin does not free all of its allocated memory upon return or is
interrupted by a signal such as SIGINT before it can do so.

This example shows how to encrypt a string using a numeric key. It uses a relatively
simple XOR operation to encrypt the string and is commonly known as the Vernam
cipher or XOR encryption. Since it requires memory space to perform this operation, it
uses the stkcopy() routine to get the required space. This memory is guaranteed to be
freed by libast when the custom builtin exits. No additional code is required to free up
the allocated memory.

/*

Korn Shell Custom Builtins

Finnbarr P. Murphy 5/18/2008 10 of 15

 * Example 6 – strcrypt
 */

#include <shell.h>
#include <stk.h>

#define SH_DICT "strcrypt"

static const char usage_strcrypt[] =
 "[-?\n@(#)$Id: strcrypt 2008-05-04 $\n]"
 "[-author?Finnbarr P. Murphy <fpmAThotmailDOTcom>]"
 "[-licence?http://www.opensource.org/licenses/cpl1.0.txt]"
 "[+NAME?strcrypt - encrypt string using numeric key]"
 "[+DESCRIPTION?\bencrypt\b a string using a numeric key.
 Note uses XOR to do encryption. Only works when
 numeric key used. Use same numeric key to decrypt.]"
 "[+OPTIONS?none.]"
 "\n"
 "\nstring key\n"
 "\n"
 "[+EXIT STATUS?] {"
 "[+0?Success.]"
 "[+>0?An error occurred.]"
 "}"
 "[+SEE ALSO?\bcrypt\b(2)]"
;

int
b_strcrypt(int argc, char *argv[], void *extra)
{
 int i, sl, pl, c;
 char *v, *s, *p;

 while (i = optget(argv, usage_strcrypt)) switch(i) {
 case ':':
 error(2, "%s", opt_info.arg);
 break;
 case '?':
 errormsg(SH_DICT, ERROR_usage(2), "%s", opt_info.arg);
 break;
 }
 argc -= opt_info.index;
 argv += opt_info.index;

 if (argc != 2)
 errormsg(SH_DICT, ERROR_usage(2), "%s", optusage((char *)0));

 s = argv[0];
 sl = strlen(s);
 p = argv[1];
 pl = strlen(p);

 /* copy string onto stack so it can be modified */
 if (!(v = (char *)stkcopy(stkstd, s)))
 error(3, "stkcopy failed");

 for (i = 0; i < sl; i++) {

Korn Shell Custom Builtins

Finnbarr P. Murphy 5/18/2008 11 of 15

 c = s[i] ^ toupper(p[i%pl]);
 if (c != 0)
 v[i] = (char)c;
 }

 sfprintf(sfstdout,"%s", v);

 return(0);
}

With this custom builtin, a string of text (argument 1) is encrypted using the supplied
numeric key (argument 2). To decrypt the encrypted string, simply invoke the custom
builtin again using the encrypted string and same numeric key.

$ strcrypt “hello” 1478
YQ[T^
$ strcrypt “YQ[T^“ 1478
hello
$

Note that libast also contains a set of routines whose names start with stak which provide
similar functionality. However the stak(3) routines are marked deprecated and should not
be used in custom builtins.

Example 7

This example demonstrates a different approach to returning information from a custom
builtin. The purpose of this custom builtin is to set the value of a specified variable
(argument 1) to the size of the specified file (argument 2).

$ statsize myfilesize /usr/bin/ksh
$ print ${myfilesize}
1157295
$

This custom builtin uses the libast nval(3) name-value routines to access the internals of
ksh93 and set up a variable with the specifed name (i.e. myfilesize) and value of 1157295
as returned by stat(2) for the file /usr/bin/ksh. See the nval(3) documentation for more
information.

/*
 * Example 7 - statsize
 */

#include <shell.h>
#include <nval.h>

#define SH_DICT "statsize"

static const char usage_statsize[] =
 "[-?\n@(#)$Id: stat 2008-05-03 $\n]"
 "[-author?Finnbarr P. Murphy <fpmAThotmailDOTcom>]"

Korn Shell Custom Builtins

Finnbarr P. Murphy 5/18/2008 12 of 15

 "[-licence?http://www.opensource.org/licenses/cpl1.0.txt]"
 "[+NAME?statsize - assign size of file to variable]"
 "[+DESCRIPTION?\bstat\b assigns the size of the specified file"
 "(in bytes) to the specified variable.]"
 "[+OPTIONS?none.]"
 "\n"
 "[+EXIT STATUS?] {"
 "[+0?Success.]"
 "[+>0?An error occurred.]"
 "}"
 "[+SEE ALSO?\bstat\b(2)]"
;

int
b_statsize(int argc, char *argv[], void *extra)
{
 Namval_t *nvp = (Namval_t *)NULL;
 Shell_t *shp = (Shell_t *)NULL;
 struct stat st;
 long d;
 register int n;

 while (n = optget(argv, usage_statsize)) switch(n) {
 case ':':
 error(2, "%s", opt_info.arg);
 break;
 case '?':
 errormsg(SH_DICT, ERROR_usage(2), "%s", opt_info.arg);
 break;
 }
 argc -= opt_info.index;
 argv += opt_info.index;

 if (argc != 2)
 errormsg(SH_DICT, ERROR_usage(2), "%s", optusage((char*)0));

 /* get current shell context */
 shp = sh_getinterp();

 /* retrieve information about file */
 stat(argv[1], &st);
 /* assign size of file to long */
 d = (long) st.st_size;

 /* access the variables tree and add specified variable */
 nvp = nv_open(argv[0], shp->var_tree,
 NV_NOARRAY|NV_VARNAME|NV_NOASSIGN);
 if (!nv_isnull(nvp))
 nv_unset(nvp);
 nv_putval(nvp, (char *)&d, NV_INTEGER|NV_RDONLY);
 nv_close(nvp);

 return(0);
}

Korn Shell Custom Builtins

Finnbarr P. Murphy 5/18/2008 13 of 15

This custom builtin could easily be extended to provide much more information about a
file using command line options. I will leave it up to you, the reader, to do this.

Example 8

This example also uses the nval(3) routines to access ksh93 internals and print out more
information about the specified shell variable.

$ showvar HOME
Value: /home/fpm, Flags: 12288 NV_EXPORT NV_IMPORT
$ integer i=123
$ showvar i
Value: 123, Flags: 10 NV_UINT64 NV_UTOL

See the libast header <nval.h> for more information about the different flags which can
be associated with each variable. Note that some flags are overloaded so that they mean
different things according to how they are OR’ed with other flags.

/*
 * Example 8 – showvar
 */

#include <shell.h>
#include <nval.h>

#define SH_DICT "showvar"

static const char usage_showvar[] =
 "[-?\n@(#)$Id: showvar 2008-05-04 $\n]"
 "[-author?Finnbarr P. Murphy <fpmAThotmailDOTcom>]"
 "[-licence?http://www.opensource.org/licenses/cpl1.0.txt]"
 "[+NAME?showvar - display variable details]"
 "[+DESCRIPTION?\bshowvar\b displays details about the
 specified variable.]"
 "[+OPTIONS?none.]"
 "\n"
 "\nvariable_name\n"
 "\n"
 "[+EXIT STATUS?] {"
 "[+0?Success.]"
 "[+>0?An error occurred.]"
 "}"
 "[+SEE ALSO?\bstat\b(2)]"
;

struct Flag {
 int flag;
 char *name;
};

/* Note: not a complete list of all possible flags */
struct Flag Flags[] = {
 NV_ARRAY, "NV_ARRAY",
 NV_BINARY, "NV_BINARY",

Korn Shell Custom Builtins

Finnbarr P. Murphy 5/18/2008 14 of 15

 NV_EXPORT, "NV_EXPORT",
 NV_HOST, "NV_HOST",
 NV_IMPORT, "NV_IMPORT",
 NV_LJUST, "NV_LJUST",
 NV_LTOU, "NV_LTOU",
 NV_RAW, "NV_RAW",
 NV_RDONLY, "NV_RDONLY",
 NV_REF, "NV_REF",
 NV_RJUST, "NV_RJUST",
 NV_TABLE, "NV_TABLE",
 NV_TAGGED, "NV_TAGGED",
 NV_UTOL, "NV_UTOL",
 NV_ZFILL, "NV_ZFILL",
 0, (char *)NULL
};

struct Flag IntFlags[] = {
 NV_LTOU|NV_UTOL|NV_INTEGER, "NV_UINT64",
 NV_LTOU|NV_RJUST|NV_INTEGER, "NV_UINT16",
 NV_RJUST|NV_ZFILL|NV_INTEGER, "NV_FLOAT",
 NV_UTOL|NV_ZFILL|NV_INTEGER, "NV_LDOUBLE",
 NV_RJUST|NV_INTEGER, "NV_INT16",
 NV_LTOU|NV_INTEGER, "NV_UINT32",
 NV_UTOL|NV_INTEGER, "NV_INT64",
 NV_RJUST, "NV_SHORT",
 NV_UTOL, "NV_LONG", /* long long /long double */
 NV_LTOU, "NV_UNSIGN",
 NV_ZFILL, "NV_DOUBLE", /* floating point */
 NV_LJUST, "NV_EXPNOTE", /* scientific notation */

 NV_INTEGER, "NV_INT32(NV_INTEGER)",
 0, (char *)NULL
};

int
b_showvar(int argc, char *argv[], void *extra)
{
 Shell_t *shp = (Shell_t *)NULL;
 Namval_t *nvp = (Namval_t *)NULL;
 char *ptr = (char *)NULL;
 int i;

 while (i = optget(argv, usage_showvar)) switch(i) {
 case ':':
 error(2, "%s", opt_info.arg);
 break;
 case '?':
 errormsg(SH_DICT, ERROR_usage(2), "%s", opt_info.arg);
 break;
 }
 argc -= opt_info.index;
 argv += opt_info.index;

 if (argc != 1)
 errormsg(SH_DICT, ERROR_usage(2), "%s", optusage((char*)0));

 /* get current shell context */
 shp = sh_getinterp();

Korn Shell Custom Builtins

Finnbarr P. Murphy 5/18/2008 15 of 15

 if ((nvp = nv_search(*argv, shp->var_tree, 0)) == NULL) {
 errormsg(SH_DICT, ERROR_exit(1),
 "%s: variable not found", *argv);

 return(1);
 }

 if ((ptr = nv_getval(nvp)) == NULL) {
 errormsg(SH_DICT, ERROR_exit(3),
 "%s: variable is NULL", *argv);
 return(1);
 }

 sfprintf(sfstdout,
 "Value: %s, Flags: %d", ptr, (int)nvp->nvflag);
 if ((int)nvp->nvflag & NV_INTEGER) {
 for (i=0; IntFlags[i].name != NULL; i++) {
 if ((int)nvp->nvflag & IntFlags[i].flag) {
 sfprintf(sfstdout, " %s", IntFlags[i].name);
 break;
 }
 }
 }
 for (i=0; Flags[i].name != NULL; i++) {
 if ((int)nvp->nvflag & Flags[i].flag)
 sfprintf(sfstdout, " %s", Flags[i].name);
 }

 sfprintf(sfstdout,"\n");
 nv_close(nvp);

 return(0);
}

In Conclusion

Custom builtins can be used to extend ksh93 in many useful ways just as Perl modules
are used to extend Perl and Python modules are used to extend Python. To date this has
not happened with ksh93. I believe that this is due to the complete lack of good
documentation on how to write custom builtins.

This article is but a brief introduction on the subject. If you want to really learn how to
write custom builtins, I strongly recommend that you download the ast-ksh source code
from http://www.research.att.com/sw/tools/uwin/ and study it. You should also read
"Guidelines for writing ksh-93 built-in commands" by David Korn (filename:
builtins.mm) which is located in the top-level directory of the ksh93 source tree and
examine the source code for the ksh93 builtins provided in the …/src/cmd/ksh93/bltins
directory and the source code for the libcmd builtins at …/src/lib/libcmd. An additional
resource is the OpenSolaris ksh93 integration project which includes a number of extra
custom builtins i.e. poll, open, close, dup, tmpfile, stat and rewind.

