
1

Simple Algorithms for Peak Detection in Time-Series

Girish Keshav Palshikar

Tata Research Development and Design Centre (TRDDC)

54B Hadapsar Industrial Estate

Pune 411013, India.

Email: gk.palshikar@tcs.com

mailto:gk.palshikar@tcs.com

2

Simple Algorithms for Peak Detection in Time-Series

Abstract: Identifying and analyzing peaks (or spikes) in a given time-series is important in many

applications. Peaks indicate significant events such as sudden increase in price/volume, sharp

rise in demand, bursts in data traffic etc. While it is easy to visually identify peaks in a small

univariate time-series, there is a need to formalize the notion of a peak to avoid subjectivity and

to devise algorithms to automatically detect peaks in any given time-series. The latter is

important in applications such as data center monitoring where thousands of large time-series

indicating CPU/memory utilization need to be analyzed in real-time. A data point in a time-series

is a local peak if (a) it is a large and locally maximum value within a window, which is not

necessarily large nor globally maximum in the entire time-series; and (b) it is isolated i.e., not

too many points in the window have similar values. Not all local peaks are true peaks; a local

peak is a true peak if it is a reasonably large value even in the global context. We offer different

formalizations of the notion of a peak and propose corresponding algorithms to detect peaks in

the given time-series. We experimentally compare the effectiveness of these algorithms.

Keywords: Time-series, Peak detection, Burst detection, Spike detection

1. INTRODUCTION

Identifying and analyzing peaks (also called spikes) in a given time-series is an important in

many applications, because peaks are useful topological features of a time-series. In power

distribution data, peaks indicate sudden high demands. In server CPU utilization data, peaks

indicate sharp increase in workload. In network data, peaks correspond to bursts in traffic. In

financial data, peaks indicate abrupt rise in price or volume. Troughs can be considered as

inverted peaks and are equally important in many applications. Many other application areas –

e.g., bioinformatics (Azzini et al (2004)), mass spectrometry (Coombes et al (2005)), signal

processing (Jordanov, Hall and Kastner (2002), Harmer et al (2008)), image processing (Ma1,

van Genderen1 and Beukelman (2005)), astrophysics (Zhu and Shaha 2003) – require peak

detection. We distinguish between peaks (which are high values with sharp rise followed quickly

by sharp fall implying a narrow base width) and bursts (which are relatively wide contiguous

regions of high values). Thus a burst consists of a wide region of high values with sharp falls on

3

either side, whereas a peak is a very narrow region (only a few points) of high values with sharp

falls on either side. We formalize these notions below.

After the peaks are detected, analysis of these peaks consists of many tasks such as identifying

periodicity of peaks (Vlachos, Meek, Vagena and Gunopulos (2004)), forecasting the time of

occurrence and value of the next peak (Choi, Park, Kim and Kim (1996)) and identifying

dependencies among peaks of two or more time-series (e.g., in a multivariate time-series).

While it is easy to visually identify peaks in a small univariate time-series, there is a need to

formalize the notion of a peak to avoid subjectivity and to devise algorithms to automatically

detect peaks in any given time-series. The latter is important in applications such as data center

monitoring where thousands of large time-series indicating CPU/memory utilization of

thousands of servers need to be analyzed in real-time.

In this paper, we propose several different ways of formalizing the notion of a peak. We present

several different algorithms, each based on a specific formalization of the notion of a peak, to

detect all peaks in the given time-series. We discuss experimental evaluation of these algorithms.

We also provide a comparison of the proposed algorithms among each other and with those in

the related literature.

2. RELATED WORK

Peak detection is a common task in time-series analysis and signal processing. Standard

approaches to peak detection include (i) using smoothing and then fitting a known function (e.g.,

a polynomial) to the time-series; and (ii) matching a known peak shape to the time-series.

Another common approach to peak-trough detection is to detect zero-crossings (i.e., local

maxima) in the differences (slope sign change) between a point and its neighbours. However,

this detects all peaks-troughs, whether strong or not. To reduce the effects of noise, it is required

that the local signal-to-noise ratio (SNR) should be over a certain threshold; see Nijm et al

(2007) and Jordanov, Hall and Kastner (2002). The key question now is how to set the correct

threshold so as to minimize false positives. Ma, van Genderen and Beukelman (2005) compute

4

the threshold automatically by adapting it to the noise levels in the time-series as h = (max +

abs_avg)/2 + K * abs_dev, where max is the maximum value in the time-series, abs_avg is the

average of the absolute values in the time-series, abs_dev is the mean absolute deviation and K is

a user-specified constant.

Azzini et al (2004) analyze peaks in gene expression microarray time-series data (for malaria

parasite Plasmodium falciparum) using multiple methods; each method assigns a score to every

point in the time-series. In one method, the score is the rate of change (i.e., the derivative)

computed at each point. In another method, the score is computed as the fraction of the area

under the candidate peak. Top 10 candidate peaks are selected for each method; peaks detected

by multiple methods are chosen as true peaks. The detected peaks are used to identify genes;

SVM are then used to assign a functional group to each identified gene.

Key problems in peak detection are noise in the data and the fact that peaks occur with different

amplitudes (strong and weak peaks) and at different scales, which result in a large number of

false positives among detected peaks. Based on the observation that peaks in mass spectroscopy

data have characteristic shapes, Du, Kibbe and Lin (2006) propose a continuous wavelet

transform (CWT) based pattern-matching algorithm for peak detection. 2D array of CWT

coefficients is computed (using a Mexican Hat mother wavelet which has the basic shape like a

peak) for the time-series at multiple scales and “ridges” in this wavelet space representation are

systematically examined to identify peaks. Coombes et al (2005) and Lange et al (2006) present

other approaches for peak detection using wavelets and their applications to analyze

spectroscopy data.

Zhu and Shasha (2003) propose a wavelet-based burst (not peak) detection algorithm. The

wavelet coefficients (as well as window statistics such as averages) for Haar wavelets are

organized in a special data structure called the shifted wavelet tree (SWT). Each level in the tree

corresponds to a resolution or time scale and each node corresponds to a window. By

automatically scanning windows of different sizes and different time resolutions, the bursts can

be elastically detected (appropriate window size is automatically decided). Zhu and Shasha

5

(2003) apply their technique to detecting Gamma Ray bursts in real-time in the Milagro

astronomical telescope, which vary widely in their strength and duration (from minutes to days).

Harmer et al (2008) propose a momentum-based algorithm to detect peaks. The idea is compute

velocity (i.e., rate of change) and momentum (i.e., product of value and velocity) at various

points. A “ball” dropped from a previously detected peak will gain momentum as it climbs down

and lose momentum as it climbs the next peak; the point where it comes to rest (loses all its

momentum) is the next peak. Simple analogs of the laws in Newtonian mechanics are proposed

(e.g., friction) to compute changes in momentum as the ball traverses the time-series.

Vlachos et al (2004) describe a moving average based algorithm for burst (not peak) detection;

our peak function S2 is closely related to this algorithm. The time-series is smoothed using a

moving average filter and values which are larger than x times the standard deviation of the

entire (smoothed) time-series are considered as peaks; x is typically between 1.5 to 2.0. The

extent of smoothing is decided using domain knowledge (e.g., 30 points for daily data). See also

Vlachos et al (2008) for closely related work, application to burst detection in real-time

streaming data and analysis of correlations between bursts.

3. PROBLEM FORMALIZATION

Let T = x1, x2, …, xN be a given univariate uniformly sampled time-series containing N values.

Without loss of generality, the time instants are assumed to be 1, 2, …, N (i.e., the time-series T

is uniformly sampled). Let xi be a given i
th

 point in T. Let S be a given peak function, which

associates a score (which is a non-negative real number) S(i, xi, T) with i
th

 element xi of the given

time-series T. A given point xi in T is a peak if S(i, xi, T)  , where  is a user-specified (or

suitably calculated) threshold value. The important question is: how to compute the function S?

We provide different characterizations of the peak function S.

We begin with the observation that a peak is clearly a local phenomenon, although a local peak

may not be accepted as a true peak in the light of other peaks in the time-series. A data point in a

time-series is a local peak if (a) it is a large and locally maximum value within a window; the

6

value need not necessarily be large nor globally maximum in the entire time-series; and (b) it is

isolated i.e., not too many points in the window have similar values. Not all local peaks are true

peaks; a local peak is a true peak if it is a reasonably large value even in the global context. We

offer different formalizations of the notion of a peak and propose corresponding algorithms to

detect peaks in the given time-series.

We first propose several different ways to compute the function S, which captures the

“spikiness” of the point xi in the local context. We then discuss how locally detected peaks (using

the function S) can be validated in the time-series as a whole. In the following, we assume that k

> 0 is a given integer. Let N
+
(k,i,T) = <xi+1, xi+2,…,xi+k> the sequence of k right temporal

neighbours of xi i.e., k points immediately following the i
th

 point xi in T. N

(k,i,T) is defined

similarly as the set of k left (previous) temporal neighbours of xi. Let N(k,i,T) = N
+
(k,i,T) 

N

(k,i,T) denote the sequence of 2k points around the i

th
 point (without the i

th
 point itself) in T (

denotes concatenation). Let N(k,i,T) = N
+
(k,i,T)  {xi}  N


(k,i,T). For clarity, the definitions

below generally assume that k < i < N – k; each definition can be easily modified to cover other

values of i towards the beginning and end of the time-series.

1. For a given point xi in T, the following function S1 computes the average of (i) the maximum

among the signed distances of xi from its k left neighbours and (ii) the maximum among the

signed distances of xi from its k right neighbours. Low values of k (e.g., 3 to 5) are usually

suitable, if most peaks are “thin”. Values of S1(k,i,xi,T) indicate the “significance” of the

height of the peak at the i
th

 time instant.

2

},,,max{},,,max{
),,,(2121

1

kiiiiiikiiiiii
i

xxxxxxxxxxxx
TxikS  




2. Function S2 computes the average of (i) the average of the signed distances of xi from its k

left neighbours and (ii) the average of the signed distances of xi from its k right neighbours.

2

)()(

),,,(

2121

2

k

xxxxxx

k

xxxxxx

TxikS

kiiiiiikiiiiii

i

 








3. Function S3 computes the average signed distance of the i
th

 value xi in T from the average

value of its k temporal neighbours.

7

2

......

),,,(

2121

3








 








 






k

xxx
x

k

xxx
x

TxikS

kiii
i

kiii
i

i

4. Entropy of any sequence of M values A = <a1, a2,…,aM> is defined as follows:

 



M

i

iwiww apapAH
1

))(log()()(

where pw(ai) is an estimate of the probability density at ai. The kernel density technique (also

called Parzen window) can be used (Wand and Jones (1995)) to estimate the probability

density p(ai) at i
th

 value ai in the given sequence A:


 






















M

j wii

j

wii

iw
aa

aa
K

aaM
ap

i

1

1
)(

where K is a suitable kernel function and w > 0 is a given integer. Subscript w in H and p

indicates the width parameter used in kernel density estimation. Epanechnikov and Gaussian

are two well-known kernel functions (defined below):

 

otherwise

1 |x| if

0

1
4

3
)(2



 xxK

2

2

1

2

1
)(

x

exK






Function S4 computes the difference in the entropy of the two sequences N(k,i,T) and

N(k,i,T), which gives an idea of how “influential” or significant xi is in this window.

Gaussian kernel is used to compute the density estimate.

)),,(()),,((),,,,(4 TikNHTikNHTxiwkS wwi


5. Another idea is that a peak would be an “outlier” when considered in the local context of a

window of 2k points around it. While there are a large number of sophisticated approaches

for outlier detection (Barnett and Lewis (1994)), considering the need for efficiency and

ability to work with small data (2k points), we use either one of the following well-known

techniques. Let m, s denote the mean and standard deviation of the 2k data points in N(k,i,T)

around xi.

8

(a) The i
th

 point xi is a peak if (i) xi  m and (ii) |xi – m|  3s. Assuming that the 2k values in

N(k,i,T) are normally distributed with mean m and standard deviation s, by the well-

known normal probability rule, P[–3s < xi – m < –3s] = 0.997. Hence, if |xi – m|  3s then

the value xi is clearly rare. Since the data in N(k,i,T) may not always be normally

distributed, we propose the following non-parametric technique.

(b) Chebyshev Inequality states that for a random variable X with mean  and standard

deviation , and for any positive number h, P[|X - | < h]  1 – 1/h
2
 i.e., P[|X - |  h]

< 1/h
2
. Applying this to our case (and using m and s as estimators of  and ), P[|xi - m| 

hs] < 1/h
2
; e.g., h = 3 gives P[|xi - m|  3s] < 0.111. Chebyshev Inequality is non-

parametric i.e., it does not assume any particular distribution for the values of the random

variable X. Another decision rule for whether xi is a peak or not is as follows: the i
th

 point

xi is a peak if (i) xi  m and (ii) |xi – m|  hs, for some suitably chosen h > 0.

Using each of the above peak functions, we could easily write an algorithm to detect all

peaks in the given time-series T. We show below the algorithm that uses the peak

function S1 (other peak detection algorithms are very similar, except that each uses a

different peak function). The peak function S1 computes its value at each point using the

local window (context) of size 2k around that point. All points where the peak function

has a positive value are candidate peaks. We rule out some of these locally detected peaks

using the global context (time-series as a whole) as follows. We compute the mean m

and standard deviation s of all positive values of the peak function and then retain only

those points xi in the time-series which satisfy the condition S1(k,i,xi,T) – m > h * s,

where h is a user-specified constant. A simple post-processing (used in all algorithms)

involves removing peaks if they are “too near” to each other (e.g., within the same

window of size k).

9

algorithm peak1 // one peak detection algorithms that uses peak function S1

input T = x1, x2, …, xN, N // input time-series of N points

input k // window size around the peak

input h // typically 1  h  3

output O // set of peaks detected in T

begin

O =  // initially empty

for (i = 1; i < n; i++) do

a[i] = S1(k,i,xi,T); // compute peak function value for each of the N points in T

end for

Compute the mean m and standard deviation s of all positive values in array a;

for (i = 1; i < n; i++) do // remove local peaks which are “small” in global context

if (a[i] > 0 && (a[i] – m) >(h * s)) then O = O  {xi}; end if

end for

Order peaks in O in terms of increasing index in T

// retain only one peak out of any set of peaks within distance k of each other

for every adjacent pair of peaks xi and xj in O do

if |j – i|  k then remove the smaller value of {xi, xj} from O end if

end for

end

4. EXPERIMENTAL EVALUATION

In this section, we present a quick comparison of the proposed algorithms on a sample time-

series. The time-series consists of annual sunspot data for years 1700 to 2008 and is obtained

from the following web-site:

ftp://ftp.ngdc.noaa.gov/STP/SOLAR_DATA/SUNSPOT_NUMBERS/YEARLY.PLT

As seen, entropy-based peak function S4 has detected all peaks; S5 has also done quite well but

the other peak functions have missed some peaks. Note that there are no false positives. Fig. 2

shows a much noisier time-series, where we have got similar results (S4, S5 worked well).

ftp://ftp.ngdc.noaa.gov/STP/SOLAR_DATA/SUNSPOT_NUMBERS/YEARLY.PLT

10

Fig.1. Peaks detected in the annual sunspot number time-series using proposed algorithms (first k

and last k points are not analyzed for peaks).

(d) S4: k=5 w=5 h=1.5

(a) S1: k=5 h=1.5 (b) S2: k=5 h=1.5

(c) S3: k=5 h=1.5

(e) S5: k=5 h=1.5

11

Fig.2. Peaks detected in a time-series of 480 points using proposed algorithms (first k and last k

points are not analyzed for peaks).

(a) S1: k=5 h=1.5 (b) S2: k=5 h=1.5

 (c) S3: k=5 h=1.5

(e) S5: k=10 h=1.5

(d) S4: k=15 w=3

12

5. CONCLUSIONS AND FURTHER WORK

In this paper, we have proposed a formal characterization of the notion of a peak in a time-series

and have presented several algorithms for peak detection. We also presented a quick

experimental evaluation of the proposed algorithms. The algorithms work on the raw time-series

data and do not need any pre-processing such as smoothing, thereby eliminating some subjective

aspects. We are working on a more in-depth evaluation as well on deploying the peak detection

techniques in different applications. Often an element of experimentation is involved in choosing

the right values of the parameters (e.g., k) of the proposed peak detection algorithms. We have

identified some useful heuristics to automatically select the right parameter values. We are

working on peak detection in an online setting, which is important in some applications.

Acknowledgements. I thank Prof. Harrick Vin for his guidance and encouragement throughout this work. Thanks to

Manoj Jain, Navneet Rao, Shivam Sahai and other colleagues in TRDDC for their help and useful discussions.

Sincere thanks to Dr. Manasee Palshikar for her support.

References

Azzini I., Dell’Anna R., Ciocchetta F., Demichelis F., Sboner A., Blanzieri E., Malossini A.

(2004), “Simple Methods for Peak Detection in Time Series Microarray Data”, Proc.

CAMDA’04 (Critical Assessment of Microarray Data).

Barnett V., Lewis T. (1994), Outliers in Statistical Data, 3/e, Wiley Publishers.

Choi J.-G., Park J-K., Kim K.-H., Kim J.-C. (1996), “A Daily Peak Load Forecasting System

using a Chaotic Time Series”, Proc. Int. Conf. on Intelligent Systems Applications to Power

Systems, pp. 283 – 287.

K.R. Coombes et al. (2005), “Improved Peak Detection and Quantification of Mass Spectrometry

Data Acquired from Surface-enhanced Laser Desorption and Ionization by Denoising Spectra

with the Undecimated Discrete Wavelet Transform, Proteomics, 5, 4107–4117.

Du P., Kibbe W.A., Lin S.M. (2006), “Improved Peak Detection in Mass Spectrum by

Incorporating Continuous Wavelet Transform-based Pattern Matching”, Bioinformatics, vol. 22,

no. 17, pp. 2059 – 2065.

Jordanov V.T., Hall D.L., Kastner M. (2002), “Digital Peak Detector with Noise Threshold”,

Proc. IEEE Nuclear Science Symposium Conference, vol. 1, pp. 140 – 142.

13

Harmer K., Howells G., Sheng W., Fairhurst M., Deravi F. (2008), “A Peak-Trough Detection

Algorithm Based on Momentum”, Proc. IEEE Congress on Image and Signal Processing

(CISP), pp. 454 – 458.

Kleinberg J. (2002), “Bursty and Hierarchical Structure in Streams”, Proc. 8
th

 ACM SIGKDD

Conf., ACM Press, pp. 91–101.

Lange E., Gropl C., Reinert K., Kohlbacher O., Hildebrandt A., (2006), “High Accuracy Peak

Picking of Proteomics Data using Wavelet Techniques”, in Proceedings of Pacific Symposium

on Biocomputing 2006, Maui, Hawaii, USA, pp. 243–254.

Ma1 M., van Genderen1 A., Beukelman P. (2005), “Developing and Implementing Peak

Detection for Real-Time Image Registration”, Proc. 16
th

 Annual Workshop on Circuits, Systems

and Signal Processing (proRISC2005), pp. 641 – 652.

Nijm G. M., Sahakian A. V., Swiryn S., Larson A. C. (2007), “Comparison of Signal Peak

Detection Algorithms for Self-Gated Cardiac Cine MRI”, Computers in Cardiology 2007.

Vlachos M., Meek C., Vagena Z., Gunopulos D. (2004), “Identification of Similarities,

Periodicities and Bursts for Online Search Queries”, Proc. SIGMOD 2004 Conf., ACM Press,

pp. 131–142.

Vlachos M., Wu K.-L., Chen S.-K., Yu P.S. (2008), “Correlating Burst Events on Streaming

Stock market Data”, Data Mining and Knowledge Discovery, vol. 16, pp. 109 – 133.

Wand M.P., Jones M.C. (1995), Kernel Smoothing, Chapman and Hall.

Zhu Y., Shasha D. (2003), “Efficient Elastic Burst Detection in Data Streams”, Proc. SIGKDD

2003 Conf., ACM Press, pp 336–345.

