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Simple Algorithms for Peak Detection in Time-Series 

Abstract: Identifying and analyzing peaks (or spikes) in a given time-series is important in many 

applications. Peaks indicate significant events such as sudden increase in price/volume, sharp 

rise in demand, bursts in data traffic etc. While it is easy to visually identify peaks in a small 

univariate time-series, there is a need to formalize the notion of a peak to avoid subjectivity and 

to devise algorithms to automatically detect peaks in any given time-series. The latter is 

important in applications such as data center monitoring where thousands of large time-series 

indicating CPU/memory utilization need to be analyzed in real-time. A data point in a time-series 

is a local peak if (a) it is a large and locally maximum value within a window, which is not 

necessarily large nor globally maximum in the entire time-series; and (b) it is isolated i.e., not 

too many points in the window have similar values. Not all local peaks are true peaks; a local 

peak is a true peak if it is a reasonably large value even in the global context. We offer different 

formalizations of the notion of a peak and propose corresponding algorithms to detect peaks in 

the given time-series. We experimentally compare the effectiveness of these algorithms. 
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1. INTRODUCTION 

Identifying and analyzing peaks (also called spikes) in a given time-series is an important in 

many applications, because peaks are useful topological features of a time-series. In power 

distribution data, peaks indicate sudden high demands. In server CPU utilization data, peaks 

indicate sharp increase in workload. In network data, peaks correspond to bursts in traffic. In 

financial data, peaks indicate abrupt rise in price or volume. Troughs can be considered as 

inverted peaks and are equally important in many applications. Many other application areas – 

e.g., bioinformatics (Azzini et al (2004)), mass spectrometry (Coombes et al (2005)), signal 

processing (Jordanov, Hall and Kastner (2002), Harmer et al (2008)), image processing (Ma1, 

van Genderen1 and Beukelman (2005)), astrophysics (Zhu and Shaha 2003) – require peak 

detection. We distinguish between peaks (which are high values with sharp rise followed quickly 

by sharp fall implying a narrow base width) and bursts (which are relatively wide contiguous 

regions of high values). Thus a burst consists of a wide region of high values with sharp falls on 
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either side, whereas a peak is a very narrow region (only a few points) of high values with sharp 

falls on either side. We formalize these notions below.  

 

After the peaks are detected, analysis of these peaks consists of many tasks such as identifying 

periodicity of peaks (Vlachos, Meek,  Vagena and Gunopulos (2004)), forecasting the time of 

occurrence and value of the next peak (Choi, Park, Kim and Kim (1996)) and identifying 

dependencies among peaks of two or more time-series (e.g., in a multivariate time-series).  

 

While it is easy to visually identify peaks in a small univariate time-series, there is a need to 

formalize the notion of a peak to avoid subjectivity and to devise algorithms to automatically 

detect peaks in any given time-series. The latter is important in applications such as data center 

monitoring where thousands of large time-series indicating CPU/memory utilization of 

thousands of servers need to be analyzed in real-time.  

 

In this paper, we propose several different ways of formalizing the notion of a peak. We present 

several different algorithms, each based on a specific formalization of the notion of a peak, to 

detect all peaks in the given time-series. We discuss experimental evaluation of these algorithms. 

We also provide a comparison of the proposed algorithms among each other and with those in 

the related literature.  

 

2. RELATED WORK 

Peak detection is a common task in time-series analysis and signal processing. Standard 

approaches to peak detection include (i) using smoothing and then fitting a known function (e.g., 

a polynomial) to the time-series; and (ii) matching a known peak shape to the time-series. 

Another common approach to peak-trough detection is to detect zero-crossings (i.e., local 

maxima) in the differences (slope sign change) between a point and its neighbours. However, 

this detects all peaks-troughs, whether strong or not. To reduce the effects of noise, it is required 

that the local signal-to-noise ratio (SNR) should be over a certain threshold; see Nijm et al 

(2007) and Jordanov, Hall and Kastner (2002). The key question now is how to set the correct 

threshold so as to minimize false positives. Ma, van Genderen and Beukelman (2005) compute 
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the threshold automatically by adapting it to the noise levels in the time-series as h = (max + 

abs_avg)/2 + K * abs_dev, where max is the maximum value in the time-series, abs_avg is the 

average of the absolute values in the time-series, abs_dev is the mean absolute deviation and K is 

a user-specified constant.  

 

Azzini et al (2004) analyze peaks in gene expression microarray time-series data (for malaria 

parasite Plasmodium falciparum) using multiple methods; each method assigns a score to every 

point in the time-series. In one method, the score is the rate of change (i.e., the derivative) 

computed at each point. In another method, the score is computed as the fraction of the area 

under the candidate peak. Top 10 candidate peaks are selected for each method; peaks detected 

by multiple methods are chosen as true peaks. The detected peaks are used to identify genes; 

SVM are then used to assign a functional group to each identified gene.  

 

Key problems in peak detection are noise in the data and the fact that peaks occur with different 

amplitudes (strong and weak peaks) and at different scales, which result in a large number of 

false positives among detected peaks. Based on the observation that peaks in mass spectroscopy 

data have characteristic shapes, Du, Kibbe and Lin (2006) propose a continuous wavelet 

transform (CWT) based pattern-matching algorithm for peak detection. 2D array of CWT 

coefficients is computed (using a Mexican Hat mother wavelet which has the basic shape like a 

peak) for the time-series at multiple scales and “ridges” in this wavelet space representation are 

systematically examined to identify peaks. Coombes et al (2005) and Lange et al (2006) present 

other approaches for peak detection using wavelets and their applications to analyze 

spectroscopy data.  

 

Zhu and Shasha (2003) propose a wavelet-based burst (not peak) detection algorithm. The 

wavelet coefficients (as well as window statistics such as averages) for Haar wavelets are 

organized in a special data structure called the shifted wavelet tree (SWT). Each level in the tree 

corresponds to a resolution or time scale and each node corresponds to a window. By 

automatically scanning windows of different sizes and different time resolutions, the bursts can 

be elastically detected (appropriate window size is automatically decided). Zhu and Shasha 
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(2003) apply their technique to detecting Gamma Ray bursts in real-time in the Milagro 

astronomical telescope, which vary widely in their strength and duration (from minutes to days).  

 

Harmer et al (2008) propose a momentum-based algorithm to detect peaks. The idea is compute 

velocity (i.e., rate of change) and momentum (i.e., product of value and velocity) at various 

points. A “ball” dropped from a previously detected peak will gain momentum as it climbs down 

and lose momentum as it climbs the next peak; the point where it comes to rest (loses all its 

momentum) is the next peak. Simple analogs of the laws in Newtonian mechanics are proposed 

(e.g., friction) to compute changes in momentum as the ball traverses the time-series.  

 

Vlachos et al (2004) describe a moving average based algorithm for burst (not peak) detection; 

our peak function S2 is closely related to this algorithm. The time-series is smoothed using a 

moving average filter and values which are larger than x times the standard deviation of the 

entire (smoothed) time-series are considered as peaks; x is typically between 1.5 to 2.0. The 

extent of smoothing is decided using domain knowledge (e.g., 30 points for daily data). See also 

Vlachos et al (2008) for closely related work, application to burst detection in real-time 

streaming data and analysis of correlations between bursts.  

 

3. PROBLEM FORMALIZATION 

Let T = x1, x2, …, xN be a given univariate uniformly sampled time-series containing N values. 

Without loss of generality, the time instants are assumed to be 1, 2, …, N (i.e., the time-series T 

is uniformly sampled). Let xi be a given i
th

 point in T. Let S be a given peak function, which 

associates a score (which is a non-negative real number) S(i, xi, T) with i
th

 element xi of the given 

time-series T. A given point xi in T is a peak if S(i, xi, T)  , where  is a user-specified (or 

suitably calculated) threshold value. The important question is: how to compute the function S? 

We provide different characterizations of the peak function S.  

 

We begin with the observation that a peak is clearly a local phenomenon, although a local peak 

may not be accepted as a true peak in the light of other peaks in the time-series. A data point in a 

time-series is a local peak if (a) it is a large and locally maximum value within a window; the 
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value need not necessarily be large nor globally maximum in the entire time-series; and (b) it is 

isolated i.e., not too many points in the window have similar values. Not all local peaks are true 

peaks; a local peak is a true peak if it is a reasonably large value even in the global context. We 

offer different formalizations of the notion of a peak and propose corresponding algorithms to 

detect peaks in the given time-series. 

 

We first propose several different ways to compute the function S, which captures the 

“spikiness” of the point xi in the local context. We then discuss how locally detected peaks (using 

the function S) can be validated in the time-series as a whole. In the following, we assume that k 

> 0 is a given integer. Let N
+
(k,i,T) = <xi+1, xi+2,…,xi+k> the sequence of k right temporal 

neighbours of xi i.e., k points immediately following the i
th

 point xi in T. N

(k,i,T) is defined 

similarly as the set of k left (previous) temporal neighbours of xi. Let N(k,i,T) = N
+
(k,i,T)  

N

(k,i,T) denote the sequence of 2k points around the i

th
 point (without the i

th
 point itself) in T ( 

denotes concatenation). Let N(k,i,T) = N
+
(k,i,T)  {xi}  N


(k,i,T). For clarity, the definitions 

below generally assume that k < i < N – k; each definition can be easily modified to cover other 

values of i towards the beginning and end of the time-series. 

 

1. For a given point xi in T, the following function S1 computes the average of (i) the maximum 

among the signed distances of xi from its k left neighbours and (ii) the maximum among the 

signed distances of xi from its k right neighbours. Low values of k (e.g., 3 to 5) are usually 

suitable, if most peaks are “thin”. Values of S1(k,i,xi,T) indicate the “significance” of the 

height of the peak at the i
th

 time instant.  
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2. Function S2 computes the average of (i) the average of the signed distances of xi from its k 

left neighbours and (ii) the average of the signed distances of xi from its k right neighbours.  
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3. Function S3 computes the average signed distance of the i
th

 value xi in T from the average 

value of its k temporal neighbours.  



7 

 

2

......

),,,(

2121

3








 








 






k

xxx
x

k

xxx
x

TxikS

kiii
i

kiii
i

i  

4. Entropy of any sequence of M values A = <a1, a2,…,aM> is defined as follows:  
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where pw(ai) is an estimate of the probability density at ai. The kernel density technique (also 

called Parzen window) can be used (Wand and Jones (1995)) to estimate the probability 

density p(ai) at i
th

 value ai in the given sequence A:  
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where K is a suitable kernel function and w > 0 is a given integer. Subscript w in H and p 

indicates the width parameter used in kernel density estimation. Epanechnikov and Gaussian 

are two well-known kernel functions (defined below): 
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Function S4 computes the difference in the entropy of the two sequences N(k,i,T) and 

N(k,i,T), which gives an idea of how “influential” or significant xi is in this window. 

Gaussian kernel is used to compute the density estimate. 

)),,(()),,((),,,,(4 TikNHTikNHTxiwkS wwi
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5. Another idea is that a peak would be an “outlier” when considered in the local context of a 

window of 2k points around it. While there are a large number of sophisticated approaches 

for outlier detection (Barnett and Lewis (1994)), considering the need for efficiency and 

ability to work with small data (2k points), we use either one of the following well-known 

techniques. Let m, s denote the mean and standard deviation of the 2k data points in N(k,i,T) 

around xi.  
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(a) The i
th

 point xi is a peak if (i) xi  m and (ii) |xi – m|  3s. Assuming that the 2k values in 

N(k,i,T) are normally distributed with mean m and standard deviation s, by the well-

known normal probability rule, P[ –3s < xi – m < –3s] = 0.997. Hence, if |xi – m|  3s then 

the value xi is clearly rare. Since the data in N(k,i,T) may not always be normally 

distributed, we propose the following non-parametric technique.  

(b) Chebyshev Inequality states that for a random variable X with mean  and standard 

deviation , and for any positive number h, P[|X - | < h]  1 – 1/h
2
 i.e., P[|X - |  h] 

<  1/h
2
. Applying this to our case (and using m and s as estimators of  and ), P[|xi - m|  

hs] <  1/h
2
; e.g., h = 3 gives P[|xi - m|  3s] <  0.111. Chebyshev Inequality is non-

parametric i.e., it does not assume any particular distribution for the values of the random 

variable X. Another decision rule for whether xi is a peak or not is as follows: the i
th

 point 

xi is a peak if (i) xi  m and (ii) |xi – m|  hs, for some suitably chosen h > 0.  

Using each of the above peak functions, we could easily write an algorithm to detect all 

peaks in the given time-series T. We show below the algorithm that uses the peak 

function S1 (other peak detection algorithms are very similar, except that each uses a 

different peak function). The peak function S1 computes its value at each point using the 

local window (context) of size 2k around that point. All points where the peak function 

has a positive value are candidate peaks. We rule out some of these locally detected peaks 

using the global context (time-series as a whole) as follows. We compute the mean m 

and standard deviation s of all positive values of the peak function and then retain only 

those points xi in the time-series which satisfy the condition S1(k,i,xi,T) – m > h * s, 

where h is a user-specified constant. A simple post-processing (used in all algorithms) 

involves removing peaks if they are “too near” to each other (e.g., within the same 

window of size k). 
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algorithm peak1 // one peak detection algorithms that uses peak function S1 

input T = x1, x2, …, xN, N // input time-series of N points 

input k // window size around the peak 

input h // typically 1  h  3 

output O // set of peaks detected in T 

begin 

O =  // initially empty 

for (i = 1; i < n; i++) do  

a[i] = S1(k,i,xi,T); // compute peak function value for each of the N points in T 

end for  

Compute the mean m and standard deviation s of all positive values in array a; 

for (i = 1; i < n; i++) do // remove local peaks which are “small” in global context 

if (a[i] > 0 && (a[i] – m) >( h * s)) then O = O  {xi}; end if 

end for 

Order peaks in O in terms of increasing index in T 

// retain only one peak out of any set of peaks within distance k of each other 

for every adjacent pair of peaks xi and xj in O do 

if |j – i|  k then remove the smaller value of {xi, xj} from O end if 

end for 

end 

4. EXPERIMENTAL EVALUATION 

In this section, we present a quick comparison of the proposed algorithms on a sample time-

series. The time-series consists of annual sunspot data for years 1700 to 2008 and is obtained 

from the following web-site: 

ftp://ftp.ngdc.noaa.gov/STP/SOLAR_DATA/SUNSPOT_NUMBERS/YEARLY.PLT  

As seen, entropy-based peak function S4 has detected all peaks; S5 has also done quite well but 

the other peak functions have missed some peaks. Note that there are no false positives. Fig. 2 

shows a much noisier time-series, where we have got similar results (S4, S5 worked well).  

 

 

ftp://ftp.ngdc.noaa.gov/STP/SOLAR_DATA/SUNSPOT_NUMBERS/YEARLY.PLT
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Fig.1. Peaks detected in the annual sunspot number time-series using proposed algorithms (first k 

and last k points are not analyzed for peaks). 

(d) S4: k=5 w=5 h=1.5 

(a) S1: k=5 h=1.5 (b) S2: k=5 h=1.5 

(c) S3: k=5 h=1.5 

(e) S5: k=5 h=1.5 
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Fig.2. Peaks detected in a time-series of 480 points using proposed algorithms (first k and last k 

points are not analyzed for peaks). 

 

 

(a) S1: k=5 h=1.5 (b) S2: k=5 h=1.5 

 (c) S3: k=5 h=1.5 

(e) S5: k=10 h=1.5 

(d) S4: k=15 w=3 
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5. CONCLUSIONS AND FURTHER WORK 

In this paper, we have proposed a formal characterization of the notion of a peak in a time-series 

and have presented several algorithms for peak detection. We also presented a quick 

experimental evaluation of the proposed algorithms. The algorithms work on the raw time-series 

data and do not need any pre-processing such as smoothing, thereby eliminating some subjective 

aspects. We are working on a more in-depth evaluation as well on deploying the peak detection 

techniques in different applications. Often an element of experimentation is involved in choosing 

the right values of the parameters (e.g., k) of the proposed peak detection algorithms. We have 

identified some useful heuristics to automatically select the right parameter values. We are 

working on peak detection in an online setting, which is important in some applications.  
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