UNIX Operating Systems Information Document
Common UNIX Operating Systems:

· AIX

· HP-UX

· Red Hat Linux

· Solaris
How UNIX is different from Windows Operating System:

· UNIX is File based i.e. everything in UNIX is treated as file ex: user terminal or a command is treated as a file and file handling operations can be performed on it.
· Efficient use of Command line utilities.

· Permissions can be given to the files which is very useful in authorization

Myth:

UNIX is command based and everything is black screen – Every UNIX operating system has its own Desktop and UI. However it is easy to do operations from command line than UI as UNIX is not UI friendly.

UNIX UI can be accessed using X Windows.

Advantages of UNIX OS:
· Multiple users can run multiple programs each at the same time without interfering with each other or crashing the system.

· Very efficient virtual memory, so many programs can run with a modest amount of physical memory.

· Access controls and security. All users must be authenticated by a valid account and password to use the system at all. All files are owned by particular accounts. The owner can decide whether others have read or write access to his files.

· A rich set of small commands and utilities that do specific tasks well -- not cluttered up with lots of special options

· Ability to string commands and utilities together in unlimited ways to accomplish more complicated tasks -- not limited to preconfigured combinations or menus, as in personal computer systems.

· A powerfully unified file system. Everything is a file: data, programs, and all
 physical devices. Entire file system appears as a single large tree of nested

 directories; regardless of how many different physical devices (disks) are included
· A lean kernel that does the basics for you but doesn't get in the way when you try to do the unusual

· Available on a wide variety of machines - the most truly portable operating system.

Disadvantages of UNIX OS:
· The traditional command line shell interface is user hostile -- designed for the programmer, not the casual user.

· Commands often have cryptic names and give very little response to tell the user what they are doing. Much use of special keyboard characters - little typos have unexpected results.

· To use UNIX well, you need to understand some of the main design features. Its power comes from knowing how to make commands and programs interact with each other, not just from treating each as a fixed black box.

· Richness of utilities (over 400 standard ones) often overwhelms novices.
Common UNIX directories in all operating systems:
 /(root)

 |

 --

 | | | | | | | |

 /bin /dev /etc /home /lib /tmp /usr kernel file
/root - the directory located at the top of the UNIX file system. It is represented by the "/" (forward slash) character.
/bin - This directory contains the commands and utilities that you use day to day. These are executable binary files - hence the the directory name bin. Often in modern UNIX systems this directory is simply a link to /usr/bin.
/dev - This directory contains special files used to represent real physical devices such as printers and terminals. One of these files represents a null (non-existent) device. Any output sent to the null device is discarded.

/etc - This directory contains various commands and files which are used for system administration. Various network configuration files, user and group files, services are some of the files residing in this directory

/lib - This directory contains libraries that are used by various programs and languages.Often in modern UNIX systems this directory is simply a link to /usr/lib. Library files can be related to dlls in Windows.

/home – This directory contains a home directory for each user of the system. Every user has a default home directory which the user will be when the user logs into the UNIX system. Ex: /home/scott

/tmp - This directory acts as a "scratch" area in which any user can store files on a temporary basis. Log files are stored in tmp directory
/usr - This directory contains system files and directories that you share with other users. Application programs, on-line manual pages, and language dictionaries typically reside here.
Kernel file - As its name implies, the kernel is at the core of each UNIX system and is loaded in whenever the system is started up - referred to as a boot of the system.

It manages the entire resources of the system, presenting them to you and every other user as a coherent system. You do not need to know anything about the kernel in order to use a UNIX system. This information is provided for your information only.

Amongst the functions performed by the kernel are:

· Managing the machine's memory and allocating it to each process.

· Scheduling the work done by the CPU so that the work of each user is carried out as efficiently as is possible.

· Organising the transfer of data from one part of the machine to another.

· Accepting instructions from the shell and carrying them out.

· Enforcing the access permissions that are in force on the file system.

Typical Unix Architecture looks as below:

[image: image1.png]0389

Structure: UNIX architecture

05:Bodwtiny Erikim B

=

Kernel is the heart of the UNIX OS. It is the interface between the user and the Operating System.

[image: image2.png]Structure: UNIX Kernel

User programs ~—— ¢

character management

evice driver

User level libraries
stem callmlerface ¥
e ey
I i Tnter-process
1| file subsystem communication |
I process
[control
Kernel levell Lt adhdiilee
I
I memory
I
i
I

1 hardware control

Hardware level hardware

a9 05 Bodwtion Enii i =

What is a Shell?

A New user terminal is created at the time of login.

The terminal is referred to as a character device (/dev/pts/3)

Every user has a default shell assigned at the time of user creation.

The user is logged in with the default shell. Shell is the command interpreter, it accepts the commands from the user and communicates with the kernel and gives the output to the user.

There are various types of Shells available in UNIX. Some most common shells are

· Bash

· Csh

· Tcsh

· Ksh

Differences between the Shells

	 sh csh ksh bash tcsh

	Job control N Y Y Y Y

	Aliases N Y Y Y Y

	Shell functions Y N Y Y N

	"Sensible" Input/Output redirection Y N Y Y N

	Directory stack N Y Y Y Y

	Command history N Y Y Y Y

	Command line editing N N Y Y Y

	Vi Command line editing N N Y Y Y

	Emacs Command line editing N N Y Y Y

	User name look up N Y Y Y Y

	Login/Logout watching N N N N Y

	Filename completion N Y Y Y Y

	Username completion N Y Y Y Y

	Hostname completion N Y Y Y Y

	History completion N N N Y Y

	Co Processes N N Y N N

	Built-in arithmetic evaluation N Y Y Y Y

	Can follow symbolic links invisibly N N Y Y Y

	Periodic command execution N N N N Y

	Custom Prompt (easily) N N Y Y Y

	Process Substitution N N N Y N

	Underlying Syntax sh csh sh sh csh

	Freely Available N N N Y Y

	Checks Mailbox N Y Y Y Y

	Tty Sanity Checking N N N N Y

	Can cope with large argument lists Y N Y Y Y

	Has non-interactive startup file N Y Y Y Y

	Has non-login startup file N Y Y Y Y

	Can avoid user startup files N Y N Y N

	Can specify startup file N N Y Y N

	Low level command redefinition N N N N N

	Has anonymous functions N N N N N

	List Variables N Y Y N Y

	Full signal trap handling Y N Y Y N

	File no clobber ability N Y Y Y Y

	Local variables N N Y Y N

	Lexically scoped variables N N N N N

	Exceptions N N N N N

Booting Process of UNIX OS: For Solaris
Switching on the machine is boot prom level, it displays an identification banner mentioning machine host id serial no, architecture type memory and Ethernet address this is followed by the self test of various systems in the machine.

This process ultimately looks for the default boot device and reads the boot program from the boot block which is located on the 1-15 blocks of boot device. The boot block contains the ufs file system reader which is required by the next boot processes.

The ufs file system reader opens the boot device and loads the secondary boot program from /usr/platform/`uname –i`/ufsboot (uname –i expands to system architecture type)

The boot program above loads a platform specific kernel along with a generic solaris kernel

The kernel initializes itself and load modules which are required to mount the root partition for continuing the booting process.

The booting process undergoes the following phases afterwards:

1) init phase

2) inittab file

3) rc scripts & Run Level

INIT phase

Init phase is started by the execution of /sbin/init program and starts other processes after reading the /etc/inittab file as per the directives in the /etc/inittab file.

Two most important functions of init are

a) It runs the processes to bring the system to the default run level state (Run level 3 in Solaris, defined by initdefault parameter in /etc/inittab)

b) It controls the transition between different run levels by executing appropriate rc scripts to start and the stop the processes for that run level.

/etc/inittab file

This file states the default run level and some actions to be performed while the system reaches up to that level. The fields and their explanation are as follows:

S3:3:wait:/sbin/rc3 > /dev/console 2>&1 < /dev/console

S3 denotes a identification if the line

3 is run level

wait is action to be performed

/sbin/rc3 is the command to be run.

So the fields in the inittab are

Identification : run level : action : process

The complete line thus means run the command /sbin/rc3 at run level 3 and wait until the rc3 process is complete.

The action field can have any of the following keywords:

Initdefault : default run level of the system

Respawn : start and restart the process if it stops.

Powerfail : stop on powerfail

Sysinit : start and wait till console in accessible .

Wait : wait till the process ends before going on to the next line.

RC scripts & Run Levels
An Rc script performs the following functions:

a) They check and mount the file systems

b) Start and stop the various processes like network, nfs etc.

c) Perform some of the house keeping jobs.

System goes in to one of the following run level after booting depending on default run level and the commands issued for changing the run level to some other one.

0 Boot prom level ok> or > prompt in Sun.

1 Administrative run level. Single user mode

2 Multiuser mode with no resource sharing .

3 Multiuser level with nfs resource sharing

4 Not used

5 Shutdown & power off (Sun 4m and 4u architecture)

6 Reboot to default run level

S s Single user mode user logins are disabled.

Broadly speaking the running system can be in any of the following state

Single user – Minimum processes running, user logins disabled and root password is required to gain access to the shell.

Multiuser - All system processes are running and user logins are permitted

Run level of a desired state is achieved by a number of scripts executed by the rc program the rc scripts are located in /etc/rc0.d , /etc/rc1.d , /etc/rc2.d , /etc/rc3.d & /etc/rcS.d directories. All the files of a particular run level are executed in the alphanumeric order those files beginning with letter S starts the processes and those beginning with K stops the processes.

These files are hard linked to the files in /etc/init.d in order to provide a central location for all these files and eliminating the need to change the run level in case these scripts needs to be run separately . The files in /etc/init.d directory are without any S, K and numeric prefix instead a stop / start argument has to be supplied whenever these scripts are to be executed.

By default system has a number of rc scripts needed for run level transition but sometimes it becomes necessary to start some custom scripts at the booting time and turn them off at the shutdown. Custom scripts can be put in any of the required rc directory but following major considerations has to be kept in mind:

 * The sequence number of the file should not conflict with other
 files.

 * The services needed should be available by previously executed
 scripts.

 * File should be hard linked to the /etc/init.d directory.
 * The system looks for only those files beginning with letter K & S

 any thing else is ignored, therefore, to make a file inactive it

 simply changing uppercase K or S to lower case will cause system

 to ignore

Filesystem Information:
A file system is a logical method for organising and storing large amounts of information in a way which makes it easy manage. The file is the smallest unit in which information is stored.
File Types in UNIX OS:
· Ordinary Files

An ordinary file may contain text, a program, or other data. It can be either an ASCII file, with each of its bytes being in the numerical range 0 to 127, i.e. in the 7-bit range, or a binary file, whose bytes can be of all possible values 0 to 255, in the 8-bit range.

· Directory Files

Directory files are files which are directories and contain files and sub-

directories.

· Device Files

In UNIX, physical devices (printers, terminals etc.) are represented as ‘files’. This way, the same read() and write() functions used to read and write real files can also be used to read from and write to these devices.

The UNIX file system differs from the DOS style in several notable ways that make it considerably more powerful and configurable than dos [and windows].

Reversed Slash: The \ slash used to separate directories under windows, is not present in UNIX and uses the / slash between directories
UNIX is case sensitive: Firstly and perhaps most important to

remember: the file system is case sensitive

Under windows, DOS-FAT is a case Insensitive file system.

The Root Directory: The other major fundamental difference between UNIX and the DOS style file systems is the absence of 'drive letter'.

Instead of C: D:, etc. partitions and extra drives are mounted in sub directories under the 'root' file system

Thus, if drive C: is the 'root' file system, drives D: and E: could be [for example] mounted under /mnt/data and /mnt/databases.

This means the user need not concern themselves over which drive a file is on, as the entire system appears to be one contiguous file system, starting from the root directory ['/'] and descending from there in a hierarchical fashion. All files on a UNIX file system are accessed in the following format -> /dir/dir/dir/.../file

 e.g.

 /usr/bin/pico
I-List

File system actually refers to an area of physical memory represented by a single i-list. A UNIX machine may be connected to several file systems, each with its own i-list. One of those i-lists points to a special storage area, known as the root file system. The root file system contains the files for the operating system itself, and must be available at all times. Other file systems are removable. Removable file systems can be attached, or mounted, to the root file system. Typically, an empty directory is created on the root file system as a mount point, and a removable file system is attached there. When you issue a cd command to access the files and directories of a mounted removable file system, your file operations will be controlled through the i-list of the removable file system.

The purpose of the i-list is to provide the operating system with a map into the memory of some physical storage device. The map is continually being revised, as the files are created and removed, and as they shrink and grow in size. Thus, the mechanism of mapping must be very flexible to accommodate drastic changes in the number and size of files. The i-list is stored in a known location, on the same memory storage device that it maps.

Each entry in an i-list is called an i-node. An i-node is a complex structure that provides the necessary flexibility to track the changing file system. The i-nodes contain the information necessary to get information from the storage device, which typically communicates in fixed-size disk blocks. An i-node contains 10 direct pointers, which point to disk blocks on the storage device. In addition, each i-node also contains one indirect pointer, one double indirect pointer, and one triple indirect pointer. The indirect pointer points to a block of direct pointers. The double indirect pointer points to a block of indirect pointers, and the triple indirect pointer points to a block of double indirect pointers. By structuring the pointers in a geometric fashion, a single i-node can represent a very large file.

The file system table

Each file system that is mounted on a UNIX machine is accessed through its own block special file. The information on each of the block special files is kept in a system database called the file system table, and is usually located in /etc/fstab. It includes information about the name of the device, the directory name under which it will be mounted, and the read and write privileges for the device. It is possible to mount a file system as "read-only," to prevent users from changing anything.
Memory Management:
Kinds of Memory:

· Main - The physical Random Access Memory located on the CPU motherboard that most people think of when they talk about RAM. Also called Real Memory. This does not include processor caches, video memory, or other peripheral memory.

· File System - Disk memory accessible via pathnames. This does not include raw devices, tape drives, swap space, or other storage not addressable via normal pathnames. It does include all network file systems.

· Swap Space - Disk memory used to hold data that is not in Real or File System memory. Swap space is most efficient when it is on a separate disk or partition, but sometimes it is just a large file in the File System.

OS Memory Uses:

· Kernel - The Operating System's own (semi-)private memory space. This is always in Main memory.

· Cache - Main memory that is used to hold elements of the File System and other I/O operations. Not to be confused with the CPU cache or disk drive cache, this is not part of main memory.

· Virtual- is simply the sum of the physical memory (RAM) and the total swap space assigned by the system administrator at the system installation time. Mathematically,

 Virtual Memory (VM) = Physical RAM + Swap space.

Process Memory Uses:

· Data - Memory allocated and used by the program (usually via malloc, new or similar runtime calls).

· Stack - The program's execution stack (managed by the OS).

· Mapped - File contents addressable within the process memory space.

Swapping
The UNIX kernel divides the memory into manageable chunks called pages. A single page of memory is usually 4096 or 8192 bytes (4 or 8KB). Memory pages are laid down contiguously across the physical and virtual memory.

The collection of pages which a process is expected to use in the very near future (usually those pages it has used in the very near past) is called its resident set. The process of moving some pages out of main memory and moving others in is called swapping.
A page fault occurs when the CPU tries to access a page that is not in main memory, thus forcing the CPU to wait for the page to be swapped in. Since moving data to and from disks takes a significant amount of time, the goal of the memory manager is to minimize the number of page faults.

Where a page will go when it is "swapped-out" depends on how it is being used. In general, pages are swapped out as follows:

Kernel

 Never swapped out.

Cache

 Page is discarded.

Data

 Moved to swap space.

Stack

 Moved to swap space.

Mapped

 Moved to originating file if changed and shared.

 Moved to swap space if changed and private.

It is important to note that swapping itself does not necessarily slow down the computer. Performance is only impeded when a page fault occurs. At that time, if memory is scarce, a page of main memory must be freed for every page that is needed. If a page that is being swapped out has changed since it was last written to disk, it can't be freed from main memory until the changes have been recorded (either in swap space or a mapped file).

Writing a page to disk need not wait until a page fault occurs. Most modern UNIX systems implement preemptive swapping, in which the contents of changed pages are copied to disk during times when the disk is otherwise idle. The page is also kept in main memory so that it can be accessed if necessary. But, if a page fault occurs, the system can instantly reclaim the preemptively swapped pages in only the time needed to read in the new page. This saves a tremendous amount of time since writing to disk usually takes two to four times longer than reading. Thus preemptive swapping may occur even when main memory is plentiful, as a hedge against future shortages.

Since it is extremely rare for all (or even most) of the processes on a UNIX system to be in use at once, most of virtual memory may be swapped out at any given time without significantly impeding performance. If the activation of one process occurs at a time when another is idle, they simply trade places with minimum impact. Performance is only significantly affected when more memory is needed at once than is available.
Process Management:
The second process created by the kernel after it loads itself (the first being swapper) is called init. All subsequent processes are created by init

One of the processes started by init is inetd, the internet superdaemon. (inetd, in turn, creates many other processes, such as telnetd, on demand.) In the UNIX process hierarchy, init is called the parent process and inetd the child of init. Any process can have any number of children (up to the kernel parameter nproc, the maximum allowed number of processes).
What happens when you run a simple program, such as

fgrep -i indiana myfile

from shell prompt. Essentially, you just asked the OS to start an entire sequence of events:

1. The shell, using the PATH environment variable, searches for a file called fgrep. It also looks for the file myfile in your current directory.

2. Assuming that fgrep is found in /usr/bin, the system checks to see if it is executable. This is done by checking the permission bits.

3. Assuming that fgrep has the right permissions bits, the header of the executable fgrep is read. It contains information about the format and structure of the program fgrep.

4. The fork system call is made by the shell to create a new UNIX process. This new process is identical to the shell process (in that the address space of the child process contains the shell's text and data segments).

5. The shell makes the exec system call to execute fgrep. In the process, the text and data segments of fgrep replace those of the shell's in the child process.

6. The child fgrep process is run, results are displayed, the child process quits, and control is returned back to the parent shell. Items 4 and 5 above constitute the basic mechanism (fork and exec) by which new processes are created in UNIX.
How the Kernel Manages Processes in UNIX

Address Space: For each new process created, the kernel sets up an address space in memory. This address space consists of the following logical segments:

· text - contains the program's instructions.

· data - contains initialized program variables.

· bss - contains uninitialized program variables.

· stack - a dynamically growable segment, it contains variables allocated locally and parameters passed to functions in the program.

Each process has two stacks: a user stack and a kernel stack. These stacks are used when the process executes in the user or kernel mode (described below).

User Mode: Processes, created directly by the users, whose instructions are currently executing in the CPU, are considered to be operating in the user-mode. Processes running in the user mode do not have access to code and data for other users or to other areas of address space protected by the kernel from user mode access.

Kernel Mode: Processes carrying out kernel instructions are said to be running in the kernel-mode. A user process can be in the kernel-mode while making a system call, while generating an exception/fault, or in case on an interrupt. Essentially, a mode switch occurs and control is transferred to the kernel when a user program makes a system call. The kernel then executes the instructions on the user's behalf.

While in the kernel-mode, a process has full privileges and may access the code and data of any process (in other words, the kernel can see the entire address space of any process).
Each process is given its share of the CPU for 20ms, then left to sleep until its turn again at the CPU. This process of moving processes in and out of the CPU is called context switching. The kernel makes the operating system appear to be multi-tasking (i.e. running processes concurrently) via the use of efficient context-switching.
Context switching for a user process may occur also between threads of the same process.
Detailed Classification of the Operating Systems:
1. AIX – Advanced Interactive Executor

Vendor – IBM

Architecture – Power PC

Version – 5.3

OS Bits – 64 (bootinfo –Y)

Installable Types – bff (called filesets and rpms (for 5.L

versions)

File System – Journal File System (jfs)
Max File System – 128 GB
Max File Size – 64 GB
Max no. of users – 4294967295

Max RAM - 1TB

Shared Object Extension (dlls) - .a

2. Solaris
Vendor – Sun Microsystems

Architecture – Sparc

Version – 10

OS Bits – 64 (isainfo -kv)

Installable Types – packages (.pkg)
File System – Unix File System (ufs)
Max File System – 1 TB
Max File Size – 1 TB
Max no. of users – 2147483647

Max RAM - 16TB
Shared Object Extension (dlls) - .so
3. HP – UX
Vendor – Hewlett Packard

Architecture – PA -RISC

Version – 11i

OS Bits – 64 (getconf WORD_BIT)

Installable Types – depots (.depot)

File System – VERITAS File System (vxfs)

Max File System – 128 GB
Max File Size – 128 GB
Max no. of users – 2147483647

Max RAM - 4TB
Shared Object Extension (dlls) - .so

4. Red Hat Linux
Vendor – Red Hat

Architecture – x86, pSeries, iSeries

Version – 9

OS Bits – 32 & 64 (getconf LONG_BIT)

Installable Types – red hat package manager (.rpm)

File System – extended File System (ext3)

Max File System – 2 TB
Max File Size – 2 GB
Max no. of users – 65535

Max RAM - 64 GB
Shared Object Extension (dlls) - .so

Some Important Commands list:

	Command
	AIX
	HP-UX
	LINUX
	Solaris

	Performance monitor
	top
	top
	top
	top

	
	monitor
	glance
	
	

	System activity reporter
	sar
	sar
	sar {sysstat}
	sar

	Virtual Memory statistics
	vmstat
	vmstat
	vmstat
	vmstat

	Hosts IP addresses
	/etc/hosts
	/etc/hosts
	/etc/hosts
	/etc/inet/hosts

	OS Level
	oslevel
	uname -r
	uname -r
	uname -r

	Filesystem table
	/etc/filesystems
	/etc/fstab
	/etc/fstab
	/etc/vfstab

	I/O statistics
	iostat
	iostat
	iostat {sysstat}
	iostat

	User Account file
	/etc/passwd
	/etc/passwd
	/etc/passwd
	/etc/passwd

	Group account file
	/etc/group
	/etc/group
	 /etc/group
	/etc/group

	Ipaddress
	ifconfig –a
	ifconfig –a
	ifconfig –a
	ifconfig -a

	Checking user groups
	lsgroups
	groups
	groups
	groups

	Administration tool
	smit
wsm
	sam
	redhat-config-users
	smc

	OS information
	uname –a
	uname –a
	uname -a
	uname –a

showrev

	Disk information
	df –h
	bdf
	df –h
	df -h

	List softwares installed
	lslpp -a
	swlist
	rpm –q -a
	pkginfo

	Install software
	installp -i
	swinstall
	rpm -i
	pkgadd -d

	delete software
	installp –u
	swremove
	rpm –e
	pkgrm

	List currently open ports
	netstat -na
	netstat –na
	netstat –na
	netstat -na

	list currently running processes
	ps –ef
	ps –ef
	ps –ef
	ps -ef

	command to list environment variables
	env
	env
	env
	env

Some Important Files:
