
Metadata Update Performance in File Systems

Gregory R. Ganger, Yale N. Patt
Department of EECS, University of Michigan

ganger@eecs.umich.edu

Abstract
Structural changes, such as file creation and block al-

location, have consistently been identified as file system
performance problems in many user environments. We
compare several implementations that maintain metadata
integrity in the event of a system failure but do not require
changes to the on-disk structures. In one set of schemes,
the file system uses asynchronous writes and passes order-
ing requirements to the disk scheduler. These scheduler-
enforced ordering schemes outperform the conventional
approach (synchronous writes) by more than 30 percent for
metadata update intensive benchmarks, but are suboptimal
mainly due to their inability to safely use delayed writes
when ordering is required. We therefore introduce soft up-
dates, an implementation that asymptotically approaches
memory-based file system performance (within 5 percent)
while providing stronger integrity and security guarantees
than most UNIX file systems. For metadata update inten-
sive benchmarks, this improves performance by more than a
factor of two when compared to the conventional approach.

1 Introduction

File system metadata updates traditionally proceed
at disk speeds rather than processor/memory speeds
[Ousterhout90, McVoy91, Seltzer93], because synchronous
writes are used to properly order stable storage changes.
This update sequencing is needed to maintain integrity in
the event of a system failure (e.g., power loss).1 For ex-
ample, the rename operation changes the name of a file by
adding a link for the new name and removing the old link. If
the system goes down after the old directory block has been
written (with the link removed) but before the new one is
written, neither name for the file will exist when the system1For complete integrity,each individual update must also be atomic (not
partially written to disk). This can be achieved by forcing each critical
structure to be fully contained by a single disk sector. Each disk sector is
protected by error correcting codes that will almost always flag a partially
written sector as unrecoverable. This may result in loss of structures, but
not loss of integrity. In addition, many disks will not start laying down a
sector unless there is sufficient power to finish it.

is restarted. To protect metadata consistency, the new direc-
tory entry must reach stable storage before the old directory
block. We refer to this ordering requirement as an update
dependency, as writing the old directory block depends on
first writing the new block. The ordering constraints essen-
tially map onto three simple rules: (1) Never reset the old
pointer to a resource before the new pointer has been set
(when moving objects), (2) Never re-use a resource before
nullifying all previous pointers to it, and (3) Never point to
a structure before it has been initialized.

Synchronous2 writes are used for metadata update or-
dering by many variants of both the original UNIXTM file
system [Ritchie78] and the Berkeley fast file system (FFS)
[McKusick84]. The performance degradation can be so
dramatic that many implementations choose to ignore cer-
tain update dependencies. For example, a pointer to a newly
allocated block should not be added to a file’s inode before
the block is initialized on stable storage. If this ordering is
not enforced, a system failure could result in the file con-
taining data from some previously deleted file, presenting
both an integrity weakness and a security hole. However,
allocation initialization with synchronous writes can de-
grade performance significantly. As a result, most UNIX
file system implementations, including FFS derivatives, ei-
ther do not force initialization or force initialization only
for newly allocated directory blocks in order to protect the
integrity of the directory hierarchy. We investigate the per-
formance cost of allocation initialization in our comparison
of different ordering schemes.

Previous schemes that address the performance penalty
of update ordering generally entail some form of log-
ging (e.g., [Hagmann87, Chutani92, Journal92]) or shadow-
paging (e.g., [Chamberlin81, Ston87, Chao92, Seltzer93]).
While these approaches have been successfully applied,2There are three types of UNIX file system writes: synchronous, asyn-
chronous and delayed. A write is synchronous if the process issues it (i.e.,
sends it to the device driver) immediately and waits for it to complete. A
write is asynchronousif the process issues it immediately but does not wait
for it to complete. A delayed write is not issued immediately; the affected
buffer cache blocks are marked dirty and issued later by a background
process (unless the cache runs out of clean blocks).



there is value in exploring implementations that do not re-
quire changes to the on-disk structures (which may have a
large installed base).

The remainder of this paper is organized as follows. Sec-
tion 2 describes our experimental setup, measurement tools
and base operating system. Sections 3 and 4 describe sev-
eral approaches to “safe" metadata updates, including our
implementations of each. Section 3 describes schemes in
which the file system uses asynchronous writes and passes
any ordering restrictions to the disk scheduler with each
request. Section 4 describes soft updates, a file system im-
plementation that safely performs metadata updates with
delayed writes. Section 5 compares the performance of
the different schemes. Section 6 compares important non-
performance characteristics, such as user-interface seman-
tics and implementation complexity. Section 7 draws some
conclusions and discusses avenues for future research. The
appendix describes some low-level details of our soft up-
dates implementation.

2 Experimental apparatus

All experiments were performed on an NCR 3433,a 33MHz
Intel 80486 machine equipped with 48 MB of main mem-
ory (44 MB for system use and 4 MB for a trace buffer).
The HP C2447 disk drive used in the experiments is a high
performance, 3.5-inch, 1 GB SCSI storage device [HP92].
Our base operating system is UNIX SVR4 MP, AT&T/GIS’s
production operating system for symmetric multiprocess-
ing. We use the ufs file system for our experiments, which
is based on the Berkeley fast file system [McKusick84].
The virtual memory system is similar to that of SunOS
[Gingell87, Moran87], and file system caching is well in-
tegrated with the virtual memory system. The scheduling
code in the device driver concatenates sequential requests,
and the disk prefetches sequentially into its on-board cache.
Command queueing at the disk is not utilized.

One important aspect of the file system’s reliability and
performance is the syncer daemon. This background pro-
cess executes at regular intervals, writing out dirty buffer
cache blocks. The syncer daemon in UNIX SVR4 MP op-
erates differently than the conventional “30 second sync"; it
awakens once each second and sweeps through a fraction of
the buffer cache, marking each dirty block encountered. An
asynchronous write is initiated for each dirty block marked
on the previous pass. This approach tends to reduce the
burstiness associated with the conventional approach.

We run all experiments with the network disconnected
and with no other non-essential activity. We obtain our
measurements from two sources. The UNIX time utility
provides total execution times and CPU times. We have
also instrumented the device driver to collect I/O traces,
including per-request queue and service delays. The traces
are collected in the 4 MB trace buffer mentioned above
and copied to a separate disk after each experiment. The

timing resolution is approximately 840 nanoseconds, and
the tracing alters performance by less than 0.01 percent
(assuming that the trace buffer could not be otherwise used).

In section 5, we use several benchmarks to compare the
performance of the metadata update schemes described in
the next two sections. To concisely quantify the perfor-
mance impacts of some of the implementation decisions,
however, it will be useful to provide small amounts of mea-
surement data with the descriptions. For this purpose, we
use the results from two metadata update intensive bench-
marks. In the N-user copy benchmark, each “user” con-
currently performs a recursive copy of a separate directory
tree (535 files totaling 14.3 MB of storage taken from the
first author’s home directory). In the N-user remove bench-
mark, each “user” deletes one newly copied directory tree.
Each datum is an average of several independent executions,
with coefficient of variation (standard deviation / mean) be-
low 0.05.

3 Scheduler-enforced ordering

With scheduler-enforced ordering, the responsibility for
properly sequencing disk writes is shifted to the disk sched-
uler (generally part of the device driver). The file system
uses asynchronous writes and augments each request with
any ordering requirements. We examine two levels of or-
dering information: a simple flag and a list of specific
dependencies.

3.1 Ordering flag

A straight-forward implementation of scheduler-enforced
ordering attaches a one-bit flag to each disk request (as
suggested in [McVoy91]). Write requests that would pre-
viously have been synchronous for ordering purposes (i.e.,
writes that may require ordering with respect to subsequent
updates) are issued asynchronously with their ordering flags
set. Of course, the disk scheduler must also be modified to
appropriately sequence flagged requests.

The most significant implementation issue is the seman-
tic meaning of the flag, which represents a contract between
the file system and the disk scheduler. The ordering seman-
tics determine which subsequent requests can be scheduled
before a flagged request and which previous requests can be
scheduled after a flagged request. With the most restrictive
semantics, a flagged request acts as a barrier. Less restric-
tive meanings offer the disk scheduler more freedom but
may require the file system to set the flag more frequently,
reducing scheduling flexibility. In general, we find that less
restrictive flag semantics result in improved performance.
In particular, allowing read requests to bypass the list of
writes waiting on ordering constraints3 can improve perfor-
mance significantly without endangering metadata integrity.3Unless the read requests are for locations to be written, of course.



We compare four meanings for the ordering flag: Full,
Back, Part and Ignore. In Full, a flagged request acts as
a full barrier (i.e., all previous requests must complete be-
fore it is scheduled and no subsequent requests can bypass
it). Back prevents requests issued after a flagged request
from being scheduled before it or any previous request, but
allows the flagged request to be re-ordered freely with pre-
vious non-flagged requests. This scheme is less restrictive
than Full but still allows several requests to be ordered with
respect to a later request with only the last such request
issued with the flag set. Part further relaxes the constraints
by requiring only that requests issued after a flagged re-
quest not be scheduled before it (i.e., previous non-flagged
requests can be re-ordered freely with subsequent requests
and the flagged request). With this flag meaning, all re-
quests that require ordering with respect to any subsequent
request must have the flag set. The addition of -NR to
any scheme indicates that the disk scheduler allows non-
conflicting read requests to bypass the list of writes waiting
because of ordering restrictions.4 Finally, Ignore re-orders
requests freely, ignoring the flag. This scheme does not
protect metadata integrity and we include it only for com-
parison.

For the 4-user copy benchmark (figure 1), performance
improves with each reduction in the flag’s restrictiveness.
Reducing the number of requests with the flag set should
improve performance by increasing the disk scheduler’s
freedom to re-order. Such cases do occur, but too infre-
quently to counter the increased restrictiveness of the flag’s
meaning. We also found that allowing reads to bypass flag-
pending writes improves performance significantly. The
disk access times (figure 1b) directly display the impact
of allowing the scheduler greater freedom. The elapsed
times (figure 1a) show how this translates into overall per-
formance. This trend, less restrictive flag semantics results
in higher performance, holds for most of our benchmarks,
and the comparisons in section 5 utilize Part-NR.

The 1-user remove benchmark (figure 2) is an exception
to this rule. The elapsed times (figure 2a) are system re-
sponse times observed by the benchmark “user.” As the
write requests that remove the directory tree are issued, a
very large queue builds up in the scheduler. This effect
is evident from the average driver response times (i.e., the
times from when requests are issued to the device driver to
when they complete, including both queue times and disk
access times) of 5+ seconds shown in figure 2b. When read
requests bypass this queue, the “user” process wastes very
little time waiting for I/O, and the benchmark completes
without waiting for the driver queue to empty (the writes fit
intomain memory). Given the -NR option, the more restric-
tive flag semantics result in lower user-observed response
times, because fewer requests interfere with read requests4Note that this could reasonably be viewed as an implementation de-
cision rather than part of the flag semantics. The ordering required for
metadata integrity pertains only to writes.

Full Back Part Part-NR Ignore

Meaning of ordering flag

0

200

400

600

800

E
la

p
se

d
 t

im
e

 (
se

co
n

d
s)

(a) Elapsed time (seconds)

Full Back Part Part-NR Ignore

Meaning of ordering flag

0

5

10

15

20

A
ve

ra
g

e
 d

is
k 

a
cc

e
ss

 t
im

e
 (

m
s)

(b) Average disk access time (ms)

Figure 1: Performance impact of ordering flag semantics
for the 4-user copy benchmark.

for service. This demonstrates the performance advantage,
in sub-saturation bursts of activity, of giving preference to
those requests which block processes [Ganger93]. How-
ever, tying the disk scheduler’s hands is a poor way of re-
alizing this performance improvement and does not behave
well when system activity exceeds the available memory
(as shown above).

3.2 Scheduler chains

Even with the least restrictive semantics for the ordering
flag, requests are often constrained unnecessarily by flagged
writes. By tagging each disk request with a unique iden-
tifier and a list of requests on which it depends (i.e., a list
of requests that must complete before it can be scheduled),
such “false" dependencies can be avoided. We refer to this
approach as scheduler chains. Similar approaches exist in
other systems. The MPE-XLTM file system provides sup-
port for ordered sequences of user writes, although write-



Part Full-NR Back-NR Part-NR Ignore

Meaning of ordering flag

0

5

10

15
E

la
p

se
d

 t
im

e
 (

se
co

n
d

s)

(a) Elapsed time (seconds)

Part Full-NR Back-NR Part-NR Ignore

Meaning of ordering flag

0

2000

4000

6000

A
ve

ra
g

e
 d

ri
ve

r 
re

sp
o

n
se

 t
im

e
 (

m
s)

(b) Average driver response time (ms)

Figure 2: Performance impact of ordering flag semantics
for the 1-user remove benchmark.

ahead loggingprotects the metadata [Busch85, Kondoff88].
[Cao93] describes a method for supporting request depen-
dencies in an intelligent storage controller (or a device
driver). As we are not dealing with multiple hosts and
an interconnection network, our disk scheduler support can
be less complete. In particular, we do not allow requests
to depend on future requests; a new request can depend
only on previously issued requests. In addition to the in-
creased scheduler complexity, the file system must maintain
information regarding which dirty blocks depend on which
outstanding requests. In most cases, this is straight-forward
because newly updated blocks depend on just-issued re-
quests.

The exception to this rule is block de-allocation. A de-
allocated block should not be re-used before the old pointer
has been re-initialized on stable storage. Generally, the
de-allocation is independent of subsequent re-use; at the
least, they usually occur during separate system calls. We
examined two approaches to maintaining the required or-

dering. The first falls back on the flag-based approach. The
asynchronous write of the inode (or indirect block) is is-
sued as a Part-NR barrier (i.e., no subsequent write request
is scheduled before it completes). The second approach
maintains information about recently freed blocks until the
re-initializedpointer reaches the disk. The blocks can be re-
allocated at any time and the new owner (inode or indirect
block) becomes dependent on the write of the old owner.
In fact, we make the newly allocated block itself depen-
dent on the old owner. This prevents new data from being
added to the old file due to untimely system failure. The
barrier approach is obviously simpler to implement, but can
cause unnecessary dependencies and thereby reduce perfor-
mance. As with the comparison of flag meanings, we find
that the less restrictive approach provides superior perfor-
mance (e.g., 16 percent for the 4-user remove benchmark).
Therefore, the second approach was used for the scheduler
chains data reported in section 5.

3.3 Avoiding write locks

Our initial implementation of scheduler-enforced ordering
revealed that, although metadata writes are no longer syn-
chronous, processes still wait for them in many cases. This
occurs when multiple updates to given file system metadata
occur within a short period of time. When a write request
is issued to the device driver, the source memory block(s)
are write-lockeduntil the request completes.5 This prevents
subsequent updates from occurring while the I/O subsystem
hardware may be accessing the data. As a result, a second
update must wait for the first to reach stable storage. One
solution is to make a second (temporary) in-memory copy
of the memory block(s) before issuing the first request. This
copy becomes the source for the first write request, obviat-
ing the need to write-lock the original at the cost of a block
copy operation.6 To avoid unnecessary overhead for the
special case of allocation initialization, we reserve a zero-
filled memory block when the system is booted. This block
becomes the source for initialization writes.7

Figure 3 compares four different implementations of the
Part ordering flag scheme described above: with no options,
with the -NR option, with the block copying (-CB) and with
both. With both (Part-NR/CB), user processes spend the
least time waiting for disk requests. Failing to include
either enhancement greatly reduces the benefit. For this5“Less critical” source data, such as file blocks and virtual memory
pages, often bypass this safety precaution. For file blocks in particular,
this is a difficult performance vs. reliability trade-off/judgment call made
by system implementors.6Copy-on-write would clearly be a superior approach. We plan to inves-
tigate this alternative, but do not expect substantially improved throughput
(the increase in CPU usage caused by the memory copying is a small
fraction of the total time). However, the copy-on-write approach should
be more “memory-friendly.”7A better approach would utilize an “erase” I/O operation (e.g., the
WRITE SAME SCSI command [SCSI93]), initializing the disk sectors
without wasting a block of memory or transferring a block of zeroes from
host memory to disk.



Part Part-NR Part-CB Part-NR/CB

Ordering flag implementation

0

200

400

600

800

E
la

p
se

d
 t

im
e

 (
se

co
n

d
s)

(a) Elapsed time (seconds)

Part Part-NR Part-CB Part-NR/CB

Ordering flag implementation

0

500

1000

1500

2000

2500

A
ve

ra
g

e
 d

ri
ve

r 
re

sp
o

n
se

 t
im

e
 (

m
s)

(b) Average driver response time (ms)

Figure 3: Implementation improvements for ordering flags
for the 4-user copy benchmark. Part-NR allows reads to bypass
writes waiting due to ordering restrictions. Part-CB uses the
block copy scheme to avoid write locks. Part-NR/CB combines
these two enhancements. The dark region of each elapsed time
bar represents the total CPU time charged to the four benchmark
processes.

reason, the performance comparisons in earlier subsections
used the block copying implementation. The CPU time
increases caused by the block copying are small and tend
to use time that was otherwise idle (processes waiting for
disk I/O). Figure 3b shows the driver response times for
each of the implementations. Again we find that the queue
grows very large as processes generate requests much more
quickly than the disk can service them. The 4-user remove
benchmark (figure 4) follows the same general trends, but
the performance differences are more substantial. Also, the
queueing delays are much larger (almost 20 seconds for
Part-NR/CB).

We also observe the same general behavior with sched-
uler chains. The block copying (-NR holds no meaning with

Part Part-NR Part-CB Part-NR/CB

Ordering flag implementation

0

20

40

60

80

E
la

p
se

d
 t

im
e

 (
se

co
n

d
s)

(a) Elapsed time (seconds)

Part Part-NR Part-CB Part-NR/CB

Ordering flag implementation

0

5000

10000

15000

20000

A
ve

ra
g

e
 d

ri
ve

r 
re

sp
o

n
se

 t
im

e
 (

m
s)

(b) Average driver response time (ms)

Figure 4: Implementation improvements for ordering flags
for the 4-user remove benchmark. Part-NR allows reads to
bypass writes waiting due to ordering restrictions. Part-CB uses
the block copy scheme to avoid write locks. Part-NR/CB combines
these two enhancements. The dark region of each elapsed time
bar represents the total CPU time charged to the four benchmark
processes.

scheduler chains) reduces the elapsed time by 26 percent
for the 4-user copy benchmark and 57 percent for the 4-user
remove benchmark.

4 Delayed metadata writes

Delayed metadata writes associate additional information
with the in-memory metadata, detailing any ordering con-
straints on stable storage updates. To complete a structural
change, the file system modifies the in-memory copies of
the affected metadata (via delayed writes) and updates the
corresponding dependency information. The dirty metadata
blocks are later flushed by the syncer daemon as described



in section 2. Of course, the ordering constraints must be
upheld in the process. Delayed metadata writes can substan-
tially improve performance by combining multiple updates
into a much smaller quantity of background disk writes.
The savings come from two sources: (1) multiple updates
to a given metadata component (e.g., removal of a recently
added directory entry), and more significantly, (2) multi-
ple independent updates to a given block of metadata (e.g.,
several files added to a single directory). The next sub-
section briefly describes our original approach (which is
flawed), and the following subsection describes our current
implementation.

4.1 Cycles and aging problems

When we began this work, we envisioned a dynamically
managed DAG (Directed, Acyclic Graph) of dirty blocks
for which write requests are issued only after all writes on
which they depend complete. In practice, we found this to
be a very difficult model to maintain, being susceptible to
cyclic dependencies and aging problems (blocks could con-
sistently have dependencies and never be written to stable
storage). Most of the difficulties relate to the granular-
ity of the dependency information. The blocks that are
read from and written to disk often contain multiple meta-
data structures (e.g., inodes or directory fragments), each
of which generally contains multiple dependency causing
components (e.g., block pointers and directory entries). As
a result, originally independent metadata changes can eas-
ily cause dependency cycles and excessive aging. Detecting
and handling these problems increases complexity and re-
duces performance.

4.2 Soft updates

Having identified coarse-grain dependency information as
the main source of cycles and aging, our most recent im-
plementation (which we refer to as soft updates) maintains
dependency information at a very fine granularity. Informa-
tion is kept for each individual metadata update indicating
the update(s) on which it depends. A block containing dirty
metadata can be written at any time, so long as any up-
dates within that block that have pending dependencies are
first temporarily “undone” (rolled back). Thus, the block
as written to disk is consistent with respect to the current
on-disk state. When the disk write completes, any undone
updates are re-established before the in-memory block can
be accessed. With this approach, aging problems do not
occur because new dependencies are not added to existing
update sequences. Dependency cycles do not occur because
no single sequence of dependent updates is cyclic. In fact,
the sequences are the same as in the original synchronous
write approach.

There are four main structural changes requiring se-
quenced metadata updates: (1) block allocation (direct and
indirect), (2) block de-allocation, (3) link addition (e.g.,

file creation), and (4) link removal. We implement block
allocation and link addition with the undo/redo approach
outlined above. For block de-allocation and link removal,
we defer the freeing of resources until after the newly reset
pointer has been written to stable storage. In a sense, these
deferred updates are undone until the disk writes on which
they depend complete.

When a disk write completes, there is often some pro-
cessing needed to update/remove dependency structures,
redo undone changes, and deal with deferred work, such as
block de-allocation and file removal. An implementation
of soft updates requires some method of performing these
small tasks in the background. Very simple changes can
be made during the disk I/O completion interrupt service
routine (ISR), which calls a pre-defined procedure in the
higher-level module that issued the request. However, any
task that can block and wait for a resource (e.g., a lock or,
worse yet, an uncached disk block) cannot be handled in
this way. Such a task must be handled outside of the ISR,
preferably by a background process. We use the syncer
daemon (described in section 2) for this purpose. Any tasks
that require non-trivial processing are appended to a single
workitem queue. When the syncer daemon next awakens
(within one second), it services the workitem queue before
its normal activities.

The appendix describes our soft updates implementation
in detail, including how each of the four main structural
changes is supported.

5 Performance comparison

In the following subsections, we compare the performance
of five different ordering schemes. As a baseline (and a
goal), we ignore ordering constraints (No Order) and use
delayed writes for all metadata updates. This baseline has
the same performance and lack of reliability as the delayed
mount option described in [Ohta90]. It is also very similar to
the memory-based file system described in [McKusick90].
The Conventional scheme uses synchronous writes to se-
quence metadata updates. The Scheduler Flag data rep-
resent the Part-NR/CB scheduler-enforced ordering flag
scheme. The Scheduler Chains data represent the best per-
forming scheme described in section 3.2. Both scheduler-
enforced ordering schemes use the block copying enhance-
ment described in section 3.3. The Soft Updates data are
from our current implementation.

5.1 Metadata throughput

Figure 5 compares the metadata update throughput sup-
ported by the five implementations as a function of the num-
ber of concurrent “users.” Each “user” works in a separate
directory. As a result, create throughput improves with the
number of “users” because less CPU time is spent check-
ing the directory contents for name conflicts. Scheduler



0 2 4 6 8

Concurrent users

0

20

40

60

T
h

ro
u

g
h

p
u

t 
(f

ile
s/

se
co

n
d

)

No Order
Soft Updates
Scheduler Chains
Scheduler Flag
Conventional

(a) 1KB file creates

0 2 4 6 8

Concurrent users

0

50

100

150

T
h

ro
u

g
h

p
u

t 
(f

ile
s/

se
co

n
d

)

No Order
Soft Updates
Scheduler Chains
Scheduler Flag
Conventional

(b) 1KB file removes

0 2 4 6 8

Concurrent users

0

50

100

T
h

ro
u

g
h

p
u

t 
(f

ile
s/

se
co

n
d

)

No Order
Soft Updates
Scheduler Chains
Scheduler Flag
Conventional

(c) 1KB file create/removes

Figure 5: Metadata update throughput (files/second). Each
data point (10,000 files split among the “users”) is an average of
several independent executions. All coefficients of variation are
less than 0.05. Allocation initialization is enforced only for Soft
Updates.

Flag reduces metadata update response times compared to
Conventional, but does not substantially improve through-
put. Scheduler Chains does better, more than doubling
file removal throughput with 8 “users.” No Order and Soft
Updates both outperform the other schemes, and the differ-
ences increase with the level of concurrency. The power
of delayed metadata writes can be seen in figure 5c, where
each created file is immediately removed. No Order and Soft
Updates proceed at memory speeds, achieving over 5 times
the throughput of the other three schemes. In all cases, Soft
Updates performance is within 5 percent of No Order.

5.2 Metadata intensive benchmarks

Table 1 shows performance data for the 4-user copy bench-
mark. No Order decreases elapsed times by 20 percent and
the number of disk requests by 12 percent when compared
to Conventional with no allocation initialization. Scheduler
Flag and Scheduler Chains decrease the elapsed times by 2
and 4 percent, respectively, but do not affect the number of
disk requests. Performance for Soft Updates is within a few
percent of No Order in both elapsed time and number of
disk requests. The performance cost of allocation initial-
ization for this benchmark ranges from 3.8 percent for Soft
Updates to 87 percent for Conventional.

The performance differences are more extreme for file
removal (table 2), which consists almost entirely of meta-
data updates. Note that Soft Updates elapsed times are
lower than No Order for this benchmark. This is due to
the deferred removal approach used by Soft Updates. The
order of magnitude decrease in disk activity (e.g., Soft Up-
dates verses Scheduler Chains) demonstrates the power of
delayed metadata writes. The lengthy response times for
the scheduler-enforced ordering schemes are caused by the
large queues of dependent background writes that form in
the device driver.

5.3 Andrew benchmark

Table 3 compares the different schemes using the original
Andrew file system benchmark [Howard88]. It consists of
five phases: (1) create a directory tree, (2) copy the data
files, (3) examine the status of every file, (4) read every byte
of each file, (5) compile several of the files.

As expected, the most significant differences are in the
metadata update intensive phases (1 and 2). The read-only
phases (3 and 4) are practically indistinguishable. The
compute intensive compile phase is marginally improved
(5-7 percent) by the four non-Conventional schemes. The
compile phase dominates the total benchmark time because
of aggressive, time-consuming compilation techniques and
a slow CPU, by 1994 standards.



Ordering Alloc. Elapsed Time Percent of CPU Time Disk I/O Response
Scheme Init. (seconds) No Order (seconds) Requests Time Avg (ms)

N 390.7 123.9 72.8 36075 293.3Conventional
Y 732.3 232.3 82.4 51419 140.1

N 381.3 120.9 72.8 36038 477.3Scheduler Flag
Y 545.7 173.1 90.0 51028 2297

N 375.1 119.0 76.0 36019 304.1Scheduler Chains
Y 530.6 168.3 86.0 51248 423.8

N 319.8 101.4 69.6 31840 368.7Soft Updates
Y 330.9 104.9 80.0 31880 262.1

No Order N 315.3 100.0 68.4 31574 304.1

Table 1: Scheme comparison using 4-user copy. Each datum is an average of several independent executions. The elapsed times are
averages among the “users”, with coefficients of variation less than 0.05. The CPU times are sums among the “users”, with coefficients
of variation less than 0.1. The disk system statistics are system-wide, with coefficients of variation less than 0.2.

Ordering Elapsed Time Percent of CPU Time Disk I/O Response
Scheme (seconds) No Order (seconds) Requests Time Avg (ms)

Conventional 80.24 1050 12.68 4600 68.02
Scheduler Flag 24.97 326.8 13.64 4631 22173

Scheduler Chains 31.03 406.2 14.80 4618 2495
Soft Updates 6.71 87.83 5.64 391 73.53

No Order 7.64 100.0 7.44 278 84.03

Table 2: Scheme comparison using 4-user remove. Each datum is an average of several independent executions. The elapsed
times are averages among the “users”, with coefficients of variation less than 0.05. The CPU times are sums among the “users”, with
coefficients of variation less than 0.1. The disk system statistics are system-wide, with coefficients of variation less than 0.2.

Ordering (1) Create (2) Copy (3) Read (4) Read (5) Compile Total
Scheme Directories Files Inodes Files

Conventional 2.49 (0.50) 4.07 (0.71) 4.08 (0.27) 5.91 (0.31) 295.8 (1.53) 312.4 (1.98)
Scheduler Flag 0.54 (0.50) 4.45 (0.77) 4.09 (0.28) 5.91 (0.29) 279.1 (1.50) 294.1 (1.96)

Scheduler Chains 0.53 (0.50) 3.72 (0.74) 4.09 (0.27) 5.86 (0.35) 280.6 (0.78) 294.8 (1.36)
Soft Updates 0.34 (0.47) 2.77 (0.60) 4.25 (0.43) 5.84 (0.86) 276.3 (0.86) 289.5 (1.32)

No Order 0.37 (0.48) 2.74 (0.52) 4.14 (0.34) 5.84 (0.38) 276.6 (2.58) 289.7 (2.76)

Table 3: Scheme comparison using Andrew benchmark. Each value is in seconds and represents an average of 100 independent
executions. The values in parens are the standard deviations. Allocation initialization was enforced only for Soft Updates.



0 2 4 6 8

Concurrent scripts

0

20

40

60

T
h
ro

u
g
h
p
u
t 
(s

cr
ip

ts
/h

o
u
r)

No Order
Soft Updates
Scheduler Chains
Scheduler Flag
Conventional

Figure 6: Scheme comparison using Sdet. Each data point
is an average of 3 independent executions and all coefficients of
variation are less than 0.02. Allocation initialization is enforced
only for Soft Updates.

5.4 Sdet

Figure 6 compares the five schemes using Sdet, from
the SPEC SDM suite of benchmarks. This benchmark
[Gaede81, Gaede82] concurrently executes one or more
scripts of user commands designed to emulate a typical
software-development environment (e.g., editing, compil-
ing, file creation and various UNIX utilities). The scripts
are generated randomly from a predetermined mix of func-
tions. The reported metric is scripts/hour as a function of
the script concurrency.

Scheduler Flag outperforms Conventional by 3-5 per-
cent. Scheduler Chains provides an additional one percent
improvement. No Order outperforms Conventional by 50-
70 percent, and Soft Updates throughput is within 2 percent
of No Order.

6 Non-performance comparisons

6.1 File system semantics

The use of synchronous writes to sequence metadata up-
dates does not imply synchronous file system semantics.
In general, the last write in a series of metadata updates is
asynchronous or delayed. In many cases, when a file system
call returns control to the caller, there is no guarantee that
the change is persistent. For link addition and block alloca-
tion, the last update adds the pointer to the directory block,
inode or indirect block. So, the requested change is not

permanent when the system call returns.8 For link removal
and block de-allocation, however, the last update modifies
the free maps. When the system call returns, the link is per-
manently removed and/or the blocks have been freed and
are available for re-use. With the scheduler-enforced order-
ing schemes, freed resources are immediately available for
re-use, but links and pointers are not permanently removed
when the system call returns. For soft updates, neither is
true. In particular, freed resources do not become available
for re-use until the re-initialized inode (or indirect block)
reaches stable storage.

Some calls have a SYNCIO flag that tells the file system
to guarantee that changes are permanent before returning.
All of the schemes we have described support this interface
(although the scheduler-enforced ordering schemes will en-
counter lengthy delays when a long list of dependent writes
has formed). It may be useful to augment additional file
system calls (e.g., link addition and link removal) with such
a flag in order to support lock files.

6.2 Implementation complexity

Of the schemes we compare, the conventional synchronous
write approach is clearly the most straight-forwardto imple-
ment. Moving to an ordering flag scheme is also straight-
forward; the synchronous writes become asynchronous with
the flag set. Our changes to the device driver required less
than 50 lines of C code. Scheduler-enforced ordering with
specific request dependencies is considerably more diffi-
cult. Our implementation required about 550 lines of C
code for the device driver support and 100 lines for the file
system changes. The support for specific remove depen-
dencies adds an additional 150 lines of code. The block-
copy enhancement described in section 3.3 required an ad-
ditional 50 lines of code. Our implementation of soft up-
dates consists of 1500 lines of C code and is restricted to
the file system and buffer cache modules. Having learned
key lessons from an initial implementation, the first author
completed the soft updates implementation in two weeks,
including most of the debugging.

7 Conclusions and Future Work

The use of synchronous writes to order metadata updates
has been identified as a file system performance problem
[Ousterhout90, McVoy91, Seltzer93]. By direct measure-
ment, we have compared several alternative implementa-
tions. Schemes in which the file system relies on the disk
scheduler to appropriately order disk writes outperform the
conventional approach by more than 30 percent in many
cases (up to a maximum observed difference of 500 per-
cent). Even with this improvement, however, these schemes8Software locking schemes that use lock files may encounter surprises
because of this.



fail to achieve the performance levels available using de-
layed writes.

Therefore, we have introduced a new mechanism, soft
updates, that approaches memory-based file system perfor-
mance (within 5 percent) while providing stronger integrity
and security guarantees (e.g., allocation initialization) than
most UNIX file systems. This translates into a performance
improvement of more than a factor of 2 in many cases (up
to a maximum observed difference of a factor of 15).

The implementations compared in this paper all prevent
the loss of structural integrity. However, each requires
assistance (provided by the fsck utility in UNIX systems)
when recovering from system failure or power loss. Un-
fortunately, the file system can not be used during this of-
ten time-consuming process, reducing data and/or system
availability. We are investigating how soft updates can be
extended to provide faster recovery.

While our experiments were performed on a UNIX sys-
tem, the results are applicable to a much wider range of
operating environments. Every file system, regardless of
the operating system, must address the issue of integrity
maintenance. Many (e.g., MPE-XLTM , CMSTM , Win-
dows NTTM ) use database techniques such as logging or
shadow-paging. Others (e.g., OS/2TM , VMSTM) rely on
carefully ordered synchronous writes and could directly use
our results.

Because the soft updates mechanism appears so promis-
ing, we plan to compare it to other popular methods of
protecting metadata integrity, such as non-volatile RAM
(NVRAM), logging and shadow-paging. NVRAM can
greatly increase data persistence and provide slight per-
formance improvements as compared to soft updates (by
reducing syncer daemon activity), but is very expensive.
Write-ahead logging provides the same protection as soft
updates, but must use delayed group commit to achieve the
same performance levels. Using shadow-paging to maintain
integrity is difficult to do with delayed writes. Combined
with soft updates, however, late binding of disk addresses
to logical blocks [Chao92] could provide very high perfor-
mance. The log-structured file system [Seltzer93] is a spe-
cial case of shadow-paging that provides integrity by group-
ing many writes atomically (with a checksum to enforce
atomicity). The large writes resulting from log-structuring
can better utilize disk bandwidth, but the required cleaning
activity reduces performance significantly.

We hope to make the non-proprietary components of our
implementations available in the near term. If interested,
please contact the authors.

8 Acknowledgements

We thank Jay Lepreau (“shepherd” for our paper), John
Wilkes, Bruce Worthington and the anonymous reviewers
for directly helping to improve the quality of this paper. We
also thank our “remote hands” during the summer months,

Carlos Fuentes. Finally, our research group is very fortu-
nate to have the financial and technical support of several
industrial partners, including AT&T/GIS, Hewlett-Packard,
Intel, Motorola, SES, HaL, MTI and DEC. In particular,
AT&T/GIS enabled this research with their extremely gen-
erous equipment gifts and by allowing us to generate ex-
perimental kernels with their source code. The high perfor-
mance disk drives used in the experiments were donated by
Hewlett-Packard.

References

[Busch85] J. Busch, A. Kondoff, "Disc Caching in the System
Processing Units of the HP 3000 Family of Computers" , HP
Journal, 36 (2), February, 1985, pp. 21-39.

[Cao93] P. Cao, S. Lim, S. Venkataraman, J. Wilkes, “The Ticker-
TAIP Parallel RAID Architecture”, ACM ISCA Proceedings,
May 1993, pp. 52-63.

[Chamberlin81] D. Chamberlin, M. Astrahan, et. al., “A History
and Evaluation of System R”, Communications of the ACM,
24 (10), 1981, pp. 632-646.

[Chao92] C. Chao, R. English, D. Jacobson, A. Stepanov, J.
Wilkes, “Mime: A High-Performance Parallel Storage De-
vice with Strong Recovery Guarantees”, Hewlett-Packard
Laboratories Report, HPL-CSP-92-9 rev 1, November 1992.

[Chutani92] S. Chutani, O. Anderson, M. Kazar, B. Leverett, W.
Mason, R. Sidebotham, “The Episode File System”, Winter
USENIX Proceedings, January 1992, pp. 43-60.

[Gaede81] S. Gaede, “Tools for Research in Computer Work-
load Characterization”, Experimental Computer Perfor-
mance and Evaluation, 1981, ed. by D. Ferrari and M.
Spadoni.

[Gaede82] S. Gaede, “A Scaling Technique for Comparing In-
teractive System Capacities”, 13th International Conference
on Management and Performance Evaluation of Computer
Systems, 1982, pp. 62-67.

[Ganger93] G. Ganger, Y. Patt, “The Process-Flow Model: Ex-
amining I/O Performance from the System’s Point of View”,
ACM SIGMETRICS Proceedings, May 1993, pp. 86-97.

[Gingell87] R. Gingell, J. Moran, W. Shannon, “Virtual Mem-
ory Architecture in SunOS”, Summer USENIX Proceedings,
June 1987, pp. 81-94.

[Hagmann87] R. Hagmann, “Reimplementing the Cedar File
System Using Logging and Group Commit”, ACM SOSP
Proceedings, 1987, pp. 155-162, published by ACM as Op-
erating Systems Review, 21 (5), November 1987.

[HP92] Hewlett-Packard Company, “HP C2244/45/46/47 3.5-
inch SCSI-2 Disk Drive Technical Reference Manual”, Edi-
tion 3, September 1992, Part No. 5960-8346.

[Howard88] J. Howard, M. Kazar, S. Menees, D. Nichols, M.
Satyanarayanan, R. Sidebotham, M. West, “Scale and Per-
formance in a Distributed File System”, IEEE Transactions
on Computer Systems, 6 (1), February 1988, pp. 51-81.

[Journal92] NCR Corporation, “Journaling File System Admin-
istrator Guide, Release 2.00”, NCR Document D1-2724-A,
April 1992.



[Kondoff88] A. Kondoff, "The MPE XL Data Management Sys-
tem: Exploiting the HP Precision Architecture for HP’s Next
Generation Commercial Computer Systems", IEEE Comp-
con Proceedings, 1988, pp. 152-155.

[McKusick84] M. McKusick, W. Joy, S. Leffler, R. Fabry, “A Fast
File System for UNIX”, ACM Transactions on Computer
Systems, August 1984, pp. 181-197.

[McKusick90] M. McKusick, M. Karels, K. Bostic, “A pageable
memory based filesystem”, UKUUG Summer Conference,
pub. United Kingdom UNIX systems User Group, Bunting-
ford, Herts., July 1990, pp. 9-13.

[McVoy91] L. McVoy, S. Kleiman, “Extent-like Performance
from a UNIX File System”, Winter USENIX Proceedings,
January 1991, pp. 1-11.

[Moran87] J. Moran, “SunOS Virtual Memory Implementation”,
EUUG Conference Proceedings, Spring 1988, pp. 285-300.

[Ohta90] M. Ohta, H. Tezuka, “A fast /tmp file system by delay
mount option”, Summer USENIX Proceedings, June 1990,
pp. 145-150.

[Ousterhout90] J. Ousterhout, “Why Aren’t Operating Systems
Getting Faster As Fast as Hardware?”, Summer USENIX
Proceedings, June 1990, pp. 247-256.

[Ritchie78] D. Ritchie, K. Thompson, “The UNIX Time-Sharing
System”, Bell System Technical Journal, 57 (6), July/August
1978, pp. 1905-1930.

[Ruemmler93] C. Ruemmler, J. Wilkes, “UNIX Disk Access Pat-
terns”, Winter USENIX Proceedings, January 1993, pp. 405-
420.

[SCSI93] “Small Computer System Interface-2”, ANSI X3T9.2,
Draft Revision 10k, March 17, 1993.

[Seltzer93] M. Seltzer, K. Bostic, M. McKusick, C. Staelin, “An
Implementation of a Log-Structured File System for UNIX”,
Winter USENIX Proceedings, January 1993, pp. 201-220.

[Ston87] M. Stonebraker, “The Design of the POSTGRES Stor-
age System”, Very Large DataBase Conference, September
1987, pp. 289-300.

A Soft updates implementation details

This appendix provides some low-level details about our
soft updates implementation. It assumes the information in
section 4.2 has already been read.

We use a basic structure for storing dependency infor-
mation, containing two sets of next/previous pointers for
internal indexing purposes, a unique identifier, a type (we
currently use 11 types), and space for several additional
type-specific values (currently 9). We found it useful to
have “organizational” dependency structures for inodes and
general file blocks (i.e., pages in our system) and to keep
these separate from the actual file system metadata. This
allows the file blocks and in-core inode structures to be
re-used without losing or corrupting the dependency infor-
mation. Whenever a directory block or inode is accessed,
we check for an outstanding dependency structure (stored
in a hash table) and make certain that any undone updates

are reflected in the copy visible to users. Two of the de-
pendency structure types serve this purpose. Three of the
type-specific values identify the “owner”: the pointer to the
virtual file system (VFS) structure, the inode number9, and
the logical block number within the file (or -1 for the inode
itself). Each organizational structure also heads two lists
of dependency structures: those that are simply waiting for
the metadata to be written to disk and those that support
undo/redo on portions of the “owner.”

Block allocation

When a new block/fragment (direct or indirect) is allo-
cated for a file, the new block pointer should not be written
to stable storage until after the block has been initialized.
This is the allocation initializationdependency described in
the introduction. At the time of allocation, we update the
metadata in the normal fashion and allocate10 an allocsafe
dependency structure for the new block (for which initial-
ized memory is also allocated) and an alloc dependency
structure (allocdirect or allocindirect, as appropriate) for
the metadata containing the block pointer (inode or indirect
block). The one allocsafe-specific value is a pointer to its
companion alloc structure. There are several alloc-specific
values: the exact location of the block pointer within the
metadata structure, the new value for the pointer, the old
value for the pointer (NULL, unless a fragment is being ex-
tended), the new and old size of the newly allocated block
(necessary for fragment extension), a pointer to the corre-
sponding allocsafe structure and a state. The state indicates
whether or not the dependency is outstanding and whether
or not the in-memory copy is up-to-date (always true for
allocation dependencies).

At this point, the implementations for direct and indirect
pointers differ; we first describe the support for pointers
located in the inode. When the initialized block has been
written to disk, the allocdirect state is modified accordingly
and the corresponding allocsafe structure is freed. The
next time the inode is written, the allocdirect structure will
also be freed. If the inode is written before the newly
allocated block has been initialized, the allocation must
first be undone. This is accomplished by replacing the new
block pointer with the old and, in the case of fragment
extension, reducing the file length appropriately. These
values can be changed in the buffer cache block without
modifying the in-core11 inode structure. “Redo” operations
are only necessary if an in-core structure holding an inode
with pending allocdirect dependencies is re-used by the file9The inode number uniquely identifies the inode within a file system.10We use a simple, fast management policy for the dependency struc-
tures. When more are needed, we allocate a page of kernel memory and
break it into a list of structures. Freeing a structure consists of adding it to
this list, and allocation simply takes the next structure off the list.11The file system always copies an inode’s contents from the buffer
cached into an in-core (or internal) inode structure before accessing them.
So, the inode structure manipulated by the file system is always separate
from the corresponding source block for disk writes.



system. When the inode is again brought in-core, the new
values replace the old and the inode is marked dirty. If this
does not happen within 15 seconds, the inode dependency
structure is added to the workitem queue. The service
function consists simply of bringing the inode in-core.

For pointers in indirect blocks, we implement things dif-
ferently. An indirect block can contain many block point-
ers, making it inefficient to traverse a list of per-pointer
structures to undo/redo updates. We associate an indirdep
dependency structure with each indirect block that has pend-
ing allocation dependencies. A block of memory equal in
size to the indirect block is allocated with this structure, and
initialized with a copy of the “safe” contents. When writing
the indirect block to disk, this “safe” block is used as the
source. When a newly allocated disk block has been initial-
ized, its allocsafe structure is freed, and the corresponding
allocindirect structure is used to update the “safe” copy and
then freed. If there are no remaining dependencies when
the indirect block is next written, the indirdep structure and
the “safe” block are freed. Because indirect blocks gener-
ally represent a very small fraction of the cache contents,
we force them to stay resident and dirty while they have
pending dependencies. This allows us to avoid additional
undo/redo embellishments.

Block de-allocation

A de-allocated block should not be re-used before the pre-
vious pointer to it has been permanently reset. We achieve
this by not freeing the block (i.e., setting the bits in the
free map) until the reset block pointer reaches stable stor-
age. When block de-allocation is required, the old block
pointer values are placed in a freeblocks dependency struc-
ture, together with the size of the last fragment, if appro-
priate. Outstanding alloc and allocsafe dependencies for
de-allocated blocks are freed at this point, since they no
longer serve any purpose. The block pointers are then reset
in the inode (or indirect block) to release the blocks. After
the modified metadata has been written to disk, the free-
blocks structure is added to the workitem queue. For the
special case of extending a fragment by moving the data to
a new block, and thus de-allocating the original fragment,
we do not consider the inode appropriately “modified” until
the allocdirect dependency clears. The blocks are freed by
the syncer daemon using the same code paths as the origi-
nal file system. Any dependency structures “owned” by the
blocks are considered complete at this point and handled
accordingly; this applies only to directory blocks.

Link addition

When a new link is added to a directory block, it should
not be written to disk until the pointed-to inode (possibly

new) has reached stable storage with its link count12 incre-
mented. We use an undo/redo approach, as with allocation
initialization, to provide this protection. The in-memory
copies of the directory block and inode are modified in
the normal fashion. In addition, an addsafe dependency
structure is allocated for the inode and an add structure is
allocated for the directory block. The one addsafe-specific
value is a pointer to the new add structure. There are several
add-specific values: the offset of the new directory entry
within the block, the pointed-to inode number, a pointer to
the addsafe structure and a state.

The state serves the same purposes described above for
allocation initialization. When the inode has been written,
the addsafe structure is freed and the state is modified ap-
propriately. When the directory block is next accessed, the
add structure is freed. If the directory block is written be-
fore the inode reaches stable storage, the link addition is
first undone by replacing the inode number in the directory
entry with zero (indicating that the entry is unused). After
the directory block write completes, the correct inode num-
ber again replaces the zero. Because the directory block’s
contents are out-of-date, we inhibit all accesses (reads and
writes) during the disk write. Also, we do not mark the
directory block as dirty immediately after the disk write
completes. Rather we allow the system to re-use the cache
block (i.e., VM page) if necessary. When the directory
block is next accessed, we make certain that all directory
entries are up-to-date. If it is not accessed within 15 sec-
onds, its dependency structure is added to the workitem
queue. The service function simply accesses the directory
block and marks it dirty.

Link removal

When a link is removed, the link count in the inode should
not be decremented before the modified directory block
reaches the disk. We provide this protection with a de-
ferred approach, like that used for block de-allocation. The
directory entry is removed in the normal fashion. If the
directory entry has a pending link addition dependency, the
add and addsafe structures are removed and the link re-
moval proceeds unhindered (the add and remove have been
serviced with no disk writes!). Otherwise, a remove depen-
dency structure is allocated for the directory block. The two
remove-specific values are the inode number and a pointer
to the VFS structure, allowing the previously pointed-to
inode to be identified later. When the directory block has
been written to disk, the remove structure is added to the
workitem queue. Its service function consists of decre-
menting the link count. If the link count becomes zero, the
inode is freed using the normal code paths and its blocks
are de-allocated as described above.12The link count identifies the number of directory entries pointing to
the inode.


