
LVM Supported Limits

The following table summarizes the supported limits in LVM for HP-UX releases from
11.00 onwards. Unless noted otherwise, the values are the same across releases.

Parameter Operation to change the
value

Min
Value

Default
Value

Max
Value

Max VGs per system

Note, in 11.31, tunable was removed

Kernel tunable ‘maxvgs’ 0 16 256

Max LVs Per VG1 vgcreate(1M) -l ‘max_lv’ 1 255 255

Max PVs per VG1 vgcreate(1M) –p ‘max_pv’ 1 16 255

Max Extents per PV1

The default value may get
adjusted to (Disk space/ Extent
size) of the first PV used for
creating the VG, if that value is
greater than 1016.

vgcreate(1M) –e ‘max_pe’ 1 1016 65535

Extent Size vgcreate(1M) –s ‘pe_size’ 1 Mbytes 4 Mbytes 256
Mbytes

Effective size of a PV1

Following patches are required for
supporting disks larger than 256Gb:

11.00 – Patch superseding
PHKL_30553

11.11 – PHKL_30622
11.23 -- PHKL_31500

pvcreate(1M) –s ‘disk_size’ Extent
Size

Disk
Capacity

2 Tbytes

Size of a LV 11.11 & 11.23 2 TBytes

[I/Os beyond
2TB will be

rejected]
Size of a LV 11.31

lvcreate(1M)/lvextend(1M)
-l ‘le_number’ | -L ‘lv_size’

0 0

16 Tbytes

Mirror copies per LV lvcreate(1M)/lvextend(1M)
-m ‘mirror_copies’

0 0 2

Stripes of LV lvcreate –i ‘stripes’ 2 None –
Must

specify

Max PVs
per VG

Stripe size of LV lvcreate –I ‘stripe_size’ 4k 8k 32768
Kbytes

Note 1: With 11.31, the new vgmodify(1M) command enables changing these values on
an existing VG. Please refer to the man page and release notes for further details.

Calculating an optimal extent size for a volume group.

Sometimes when creating a volume group (VG), the vgcreate(1M) command may abort
with a message that extent size is too small (too big error or with newer patches a more
informative error explaining that the VGRA is too big). In this situation the user is
expected to increase the extent size and re-issue the vgcreate(1M) command.

Increasing the extent size increases the data area marked stale when a write to a mirrored
logical volume fails and that can increase the time required for re-synchronizing the stale
data. Also, more space than intended may be allocated to the logical volume since the
space is allocated in units of extent size. Therefore, the optimal extent size is the smallest
value that can be used to successfully create the volume group with the given
configuration parameters.

The minimum extent size for a volume group is calculated using the maximum number
of, logical volumes MAXLVs and physical volumes (MAXPVs) in the volume group and
the maximum number of physical extents (MAXPXs) per each physical volume.

For a VG with bootable PVs, the metadata must fit within 768 Kbytes. Therefore, a
vgcreate(1M) command with a set of values for MAXLVs, MAXPVs and MAXPXs that
succeed on a VG without bootable PVs, may fail on a VG with bootable PVs. In this
situation, if the user needs to add a bootable PV to a VG, they must recreate the VG by
giving lesser values for these arguments. By far the biggest factor in the size of the
metadata is the values for MAXPVs and MAXPXs. Alternatively, they can convert the
bootable PV to a normal PV by rerunning pvcreate(1M) on that PV without ‘-B’ option
and then add it to the VG.

The following shell script will create and compile a small program that gives the
minimum extent size for a given volume group:

#!/usr/bin/sh
cat << EOF > vgrasize.c
#include <stdio.h>

#define BS 1024 /* Device block Size */
#define roundup(val, rnd) (((val + rnd - 1) / rnd) * rnd)

main(int argc, char *argv[])
{

int i, length, lvs, pvs, pxs;

if (argc != 4) {

/* Usage example:
* Maximum LVs in the VG = 255,
* Maximum PVs in the VG = 16
* Maximum extents per PV = 2500 :
*
* $ esize 255 16 2500
*/

printf("USAGE: %s <MAXLVs> <MAXPVs> <MAXPXs>\n", argv[0]);
exit(1);

}
lvs = atoi(argv[1]); pvs = atoi(argv[2]); pxs = atoi(argv[3]);

length = 16 + 2 * roundup(2 +
(roundup(36 + ((3 * roundup(pvs, 32)) / 8) +

(roundup(pxs, 8) / 8) * pvs, BS) +
roundup(16 * lvs, BS) +
roundup(16 + 4 * pxs, BS) * pvs) / BS, 8);

if (length > 768) {
printf("Warning: A bootable PV cannot be added to a VG \n"

"created with the specified argument values. \n"
"The metadata size %d Kbytes, must be less \n"
"than 768 Kbytes.\n"
"If the intention is not to have a boot disk in this \n"
"VG then do not use '-B' option during pvcreate(1M) \n"
"for the PVs to be part of this VG. \n", length);

}

length = roundup(length, 1024) / 1024;

if (length > 256) {
printf("Cannot configure a VG with this maximum values"

" for LVs, PVs and PXs\n");
exit(1);

}

for (i = 1; i < length ; i = i << 1) { }

printf("\nMinimum extent size for this configuration = %d MB\n", i);
}
EOF
make vgrasize

