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Abstract

In this paper we describe our experiences with build-
ing BlueBox, a host based intrusion detection system. Our
approach can be viewed as creating an infrastructure for
defining and enforcing very fine grained process capabili-
ties in the kernel. These capabilities are specified as a set
of rules (policies) for regulating access to system resources
on a per executable basis. The language for expressing the
rules is intuitive and sufficiently expressive to effectively
capture security boundaries.

We have prototyped our approach on Linux 2.2.14 kernel,
and have built rule templates for popular daemons such
as Apache 2.0 and wu-ftpd. We are validating our design
by testing against a comprehensive database of known at-
tacks. Our system has been designed to minimize the kernel
changes and performance impact and thus can be ported
easily to new kernels. We will discuss the motivation and
rationale behind BlueBox, its design, implementation on
Linux, and related work.

1 Introduction
The two mechanisms predominantly used to secure ap-

plication servers today are firewalls and network intru-
sion detection systems. One of the attractive features of
these mechanisms is that they are independent of the server
and thus, easily deployed. Firewalls controls the flow of
through communication and network IDSs detect possible
attacks by monitoring the communication. While firewalls,
when properly configured, serve their intended purpose,
current network IDSs suffer from a number of limitations.
Network IDSs typically analyze traffic on the network and
either scan for patterns containing known attacks or detect
statistically abnormal patterns. With the advent of traf-
fic encryption protocols such as SSL [FKK96, DA97] and
IPSEC [Atk95], a significant portion of traffic on the Inter-
net is encrypted and therefore is unavailable for examina-

tion. Also, there are well–known ways to evade network
IDSs [PN98]. Thus, increasingly, intrusion detection must
move to the host server where the content is visible in the
clear and these evasion techniques do not work. Our sys-
tem, BlueBox, is such a host based real–time intrusion de-
tection system and it can also be configured for blocking
intrusions.

To contrast our approach we first look at mechanisms
used in currently deployed host based IDSs. They are pri-
marily based on one of the following [DDW99, Jac99]:

Anomaly detection : Defined by a statistical pro-
file of “normal” behavior [JV94, ALJ 93, FHSL96,
DDNW98]. A pattern that deviates significantly from
the normal profile is considered an attack.

Misuse detection: Defined by collections of signatures
of known attacks [Jac99, Pax98, RLS 97, CDE 96].
Activities matching such patterns are considered at-
tacks.

Conceptually, misuse detection is based on knowledge
of bad behaviors (attacks) and anomaly detection is based
on knowledge of good (normal) behaviors. If both tech-
niques were perfect, then each would exactly complement
the other: i.e. what is not bad is good and vice versa.
In reality, neither technique is perfect. Misuse detection
can never know all possible attacks and it usually classi-
fies some good behaviors as attacks. Likewise, anomaly
detection can not cover all good behaviors and will mis-
take some attacks for good behaviors. Also, an entity’s be-
havior profile will change as its usage pattern changes. So
anomaly detection has to adapt its profile to these changes.
This opens the possibility for an attacker to gradually in-
crease its level of malicious activities until these activities
are considered normal.

Our policy–driven technique, like the concept of sand-
boxing, tries to define the boundary between the good and
the bad as a set of rules. These rules specify what an ex-
ecutable program or script is allowed to do and attempts
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to violate them are considered intrusions. The rules gov-
erning a process define precisely which system resources
a process can access and in what way. Section 3 gives an
overview of what the scope of the rules are. The rules are
defined through precise understanding of the expected be-
havior of the program. They can be defined using existing
templates, audit trails, configuration and, if necessary, pro-
gram semantics. The rules are specified off–line, compiled
into a machine readable binary which is associated with
the program and loaded into the kernel when the program
is executed. Rule enforcement happens when the program
is executed in the context of a process: the behavior of the
process is checked and constrained according to the rules.
The enforcement is done in the kernel during invocations
of system calls. The concept of sandboxing has appeared
in numerous contexts including IDS and we discuss this in
Section 2.

We believe that the policy–based approach of Blue-
Box and like systems offers a number of advantages over
the traditional attack–signature–based or profile–based ap-
proaches. They include:

The security boundary is much more precisely defined
in terms of the intended use of the sensitive system
resources. Rules are based on understanding a pro-
gram’s behavior and not on attack signatures or time–
variant, incomplete statistical profiles of “normal” be-
havior. This has two advantages: (1) unknown attacks
can be detected, (2) previously unseen but legitimate
behaviors would not be mistaken for attacks. There-
fore the false positive and (hopefully) the false nega-
tive rates will be lower.

Another potential win is the manageability of the IDS
especially as compared to statistical profiling based
techniques. There is no need to constantly maintain
and update attack–signature database or statistic pro-
files. Since the rules are precisely defined in terms of
system resources and not by attacks, there will be very
few updates, if any, of rules for an application running
on a particular platform.

Perhaps the most important advantage of BlueBox’s
policy–based approach is that detection is done in
real–time. therefore there is the option to block an
unauthorized access or act.

On the other hand, since the rules are defined on access
to system resources there are disadvantages as compared to
other IDSs. Some of them are:

Version Migration: Since different versions of appli-
cations may access different resources every version
will require modified sets of rules. However, in our
experience with the Apache http server, minor version

changes impact the rules very minimally. Even with
major version changes, large chunks of the rule sets
can be reused.

In Memory attacks: Since the checks on process be-
havior are made only when the process makes a sys-
tem call, attacks which are ’in memory’ can not be
detected.

The rest of the paper is organized as follows: Section 2
surveys related work and compares them with our system.
Section 3 gives an overview of the specification and gen-
eration of rules. Section 4 presents the technical details of
our design and implementation, the precise scope of rules
and the system architecture. Section 5 presents a few ex-
amples of how BlueBox thwarts several well known attacks
and also details experiences on specifying rules. Section 6
discusses the performance impact of the IDS and we con-
clude in Section 7.

2 Related Work
Restricting program behavior based on externally spec-

ified rules has a very long history dating back to the ref-
erence monitors of operating systems several decades ago.
In this section, we highlight more recent mechanisms and
compare them with our work. Some of the systems are very
different from BlueBox while others are very similar.

2.1 Language Based mechanisms

There are a large number of language based mechanisms
to restrict program behavior based on policy. They range
from the theoretical program correctness methodology of
using asserts, to the popular type based mechanisms en-
forced by the loader such as the famed Java Virtual Ma-
chine [JVM01]. While the security guarantees promised by
these mechanisms are stronger than ours, they make very
strong and in some cases, unrealistic, assumptions about
the trusted computing base (TCB). Some classes of such
systems include the following:

2.1.1 Program Correctness Based Mechanisms

This method has been the subject of extensive research
spanning decades. Recently, these mechanisms have been
proposed as effective mechanisms to mitigate exposures
[UES00]. While theoretically elegant, they are largely re-
stricted to checks in the user space. Hence, the TCB needed
for these mechanisms to be effective is unrealistic since all
the checks inserted in to the user space program must be
executed. This is rarely realized in commercial operating
systems: An attacker mounting a buffer overflow attack is
in no way restricted by any of the checks inserted in the
original program.
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2.1.2 Type based mechanisms

The celebrated Java Virtual Machine is a classic example
of a system which enforces strong checks on interpreted
byte code. For this mechanism to work one has to extend
the TCB to include the interpreter and loader. In several
controlled environments this is possible, however it is not
realistic, for reasons of performance, to have daemons such
as the http server run in this environment.

2.2 System call pattern based systems
These systems identify intrusions by an initial training

phase where exhaustive testing is used to identify the ac-
cepted set of patterns in system call sequences, and then
flagging an intrusion if there are erroneous patterns in sys-
tem calls made by daemons in an actual run. Some ex-
amples are discussed in [FHSL96, DDNW98]. The main
advantage of these systems is the minimized impact on the
kernel i.e. one needs to make few changes to the kernel to
implement them. However, they can not offer strong se-
curity guarantees: Firstly, their efficacy requires exhaus-
tive training to identify normal patterns and if not done
correctly, can result in a large number of false positives.
Secondly they are very sensitive to the exact version of
the monitored software: small changes in source code can
yield very different system call patterns. For example, the
Apache http daemon can be configured to run using pro-
cesses or threads, and the system call patterns are consider-
ably different. Since BlueBox tries to capture the resources
the daemon uses, there are very few changes between the
two versions.

2.3 Kernel Based reference monitors
In the last few years there has been a renewed interest

in sandboxing by intercepting system calls made by pro-
cesses. We describe some systems and highlight the simi-
larities and differences.

2.3.1 LIDS

The Linux Intrusion Detection system (LIDS) [XB01] aims
to extend the concept of capabilities present in the basic
Linux system by defining fine grained file access capabil-
ities for each process. BlueBox’s rules for file system ob-
jects is very similar to this. The complete rule set of Blue-
Box is a strict superset of the LIDS system. Among the
several additional features of BlueBox is the state informa-
tion which is useful in thwarting some attacks as described
in Section 5.

2.3.2 A Program as a Finite State Machine

Sekar et al [SU99] present a system which combines lan-
guage based systems with system call intercept based sys-

tems. Their approach is to model processes with a state di-
agram describing its functionality and then enforcing this
state diagram in the kernel during system call invocation.
They achieve strong security guarantees since the state di-
agram captures exact process semantics. The main draw-
back of this system is the difficulty in generating the re-
quired state diagrams for a new process. Also, we conjec-
ture based on our experience in incorporating state, that the
performance penalty in enforcing the rules could be some-
what high.

2.3.3 Generic software wrappers

Generic software wrappers[KFBK00, FBF99] are a mecha-
nism to enforce various access control and intrusion detec-
tion checks triggered by events during process execution.
The infrastructure will register various scripts to be run
based on events, monitor process execution for these events
to occur, and execute registered scripts when the events oc-
cur. This is a powerful infrastructure which can integrate
numerous approaches to system security under one unify-
ing framework. The main drawbacks of this approach is
the complexity of writing scripts and the performance im-
pact in such a complex framework. We believe that our ap-
proach is much more intuitive and has substantially better
performance.

2.3.4 Other Sandboxing Systems

The system that comes closest to our system is the work
of Bernaschi et al [BGM00]. Their system architecture is
very similar to ours and the main differences are in the syn-
tax and semantics of the rules themselves. The placements
of different parts of the system within the kernel are also
very different. Our placement aims to minimize impact on
the kernel code by placing a wrapper around kernel system
call handlers while their placement tries to minimize per-
formance impact. Our system is extensible to newer ver-
sions of the kernel since by and large the same wrapper
should work for newer kernels.

The Domain–and–Type–Enforcement (DTE) based sys-
tem by Walker et al [WSB 96] groups file system objects
into sets called types and puts a subject (an executable)
into a domain which has specific access rights to types.
It does not provide protection on non–file–system–object
resources and seems to incur more complexity when pro-
viding fine–granularity control than BlueBox.

2.4 User space system call introspection
A valid criticism of systems such as BlueBox is the mod-

ifications to the kernel required to install the infrastructure
to install and enforce process behavior rules. To circum-
vent this, one approach is to use existing monitoring infras-
tructure in kernels such as ptrace to have monitors which
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reside in user–space [Wag99, JS00]. The monitor sits in a
separate process and intercepts system calls made by the
monitored process using ptrace; the monitor process can
then enforce the rules by examining the intercepted system
calls and their parameters and possibly modifying the pa-
rameters or terminating the calls. As pointed out by the
authors[JS00], this approach has a few drawbacks. Firstly,
since rules are enforced in the context of the monitor pro-
cess, there is some overhead due to context switching and
copying data from one process’s context to the other’s.
Also, there are cases when the monitored process is not
entirely under the control of the monitor due to the imple-
mentations of ptrace.

3 BlueBox Policy Specification and Genera-
tion

Since an attack on a system must access sensitive system
resources in unintended ways to be successful, a BlueBox
policy defines and enforces rules controlling a process’s ac-
cess to system resources, thus thwarting unintended access.
We categorize system resources and the types of access to
them in Table 1.

Features of our current rule specification includes:

Access permissions to file system objects.

Access to the file system, e.g., mount, unmount.

Permitted uid and gid transitions.

signals which can be sent, received, blocked, ignored
& handled.

Process characteristics such as scheduling priorities
which can be modified.

Elementary controls for other system resources such
as IPC objects, sockets and ioctl calls. This is an area
requires more study for more comprehensive rules.

To make the policy specification expressive, we provide
an allowed system calls list as a coarser level of control
that is effective in thwarting a number of attacks. Since
system resources must be accessed through system calls,
disallowing invocations of a system call disallows access to
resources. For instance, most server processes don’t need
to mount or unmount file systems, so mount and unmount
are not in their allowed lists and an invocation of either will
be considered an intrusion regardless of the invocation’s
parameters. We have identified 72 harmless system calls;
each of which either has no security implications or is not
supported by the Linux 2.2.14 kernel. These calls are listed
in Appendix A.

The policy for a program can also be marked inheritable:
this is useful for a script where each program executed by
the script can share the script’s policy.

Based on our experience, for a given program there are
several mechanisms and tools one could use to build and
specify the rules.

Intended Semantics: The most comprehensive way to
generate the correct rules for a program is by looking
through the intended semantics of the program. While
this can be daunting for big servers such as Apache,
we have found that for several cgi–bin scripts, this is
the easiest way to capture rules since these scripts typ-
ically access few resources.

Configuration: For servers such as Apache which can
be configured to run in different ways, configuration
files need to be used (either manually or automated)
to create rules.

Audit Trails: A very straightforward mechanism to
generate large chunks of the rules is to inspect system
call audit trails. For a number of servers and scripts
we have found this to be the simplest method.

Existing Templates: For large and popular servers
such as the Apache httpd, we envision existing rule
templates which can automatically be customized to
new installations. Our reference server is the Apache
httpd for which we have developed a template. We
are currently investigating rule templates for larger ap-
plication servers and hope to include rule templates
for the most common configurations of application
servers such as the IBM WebSphere[WEB01].

While these mechanisms sound daunting for nontrivial
programs, as we discuss in section 5, we believe that the
amount of extra work is manageable. For our prototypical
application of web servers, most of the rules need to be
done once, with little customization for new servers.

4 Technical details
In this section we will first discuss the BlueBox system

architecture to show how a policy is defined and enforced,
then we discuss policy specification in details and conclude
with a discussion of BlueBox’s impact on the kernel.

4.1 System Architecture

The BlueBox system architecture is shown in Figure 1.
The architecture includes two parts :

Policy Specification and Parsing A BlueBox policy for
an executable program is specified in a human–
readable form using a text editor and then parsed into
a binary file by a parser program. This part is done
off–line and before the program is executed. Details
are in Section 4.2.
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resources types of access

File system objects create, open, read, write, execute, removal,
link–to, change of access permissions,
change of ownership

File systems mount, unmount, types of mount
Identities acquire, release, inherit
Processes (address spaces, signals, ) read, write, deliver
CPU cycles, process scheduling priority raise
System clock set, read
System/kernel memory read, write
IPC objects : pipes, semaphores, create, open (attach), read, write
message queues, shared memory,

Devices, network create/attach, open, read, write, io–control,
removal, link–to, change of access permissions,
change of ownership

Privileges acquire, release, raise, lower

Table 1. types of resources and access

Policy Loading and Enforcement Since BlueBox poli-
cies are meant to control access to system resources
which can only be accessed through system calls, the
natural place for rule enforcement is at the kernel sys-
tem call entry point. Our prototype on Linux 2.2.14
places an enforcer module at the kernel system call
entry point to enforce rules. The enforcer has built–in
knowledge of what categories of resources each call
may access so it can check the parameters of the in-
voked system call against the rules.

Since it is impractical to write policies for all pro-
cesses on a system, we added a new system call to
mark a process as being monitored ; this status will
be passed on to its children and cannot be unmarked.
As a tool, we have a simple wrapper program which
marks itself as monitored and then execves the real
program to pass on the monitored status to the new
process image. When loading the new image the mod-
ified execve system call handler 1 loads the rules into
the kernel and starts enforcement. If no rules for the
new image are found, then the process will try to in-
herit and share the rules of the old image; if these rules
are not inheritable or do not exist, then the process will
be crippled; i.e., it is only allowed to make harmless
system calls.

Rules are read–only after being loaded. Each moni-
tored process is allocated a kernel memory buffer 2 to

1The API for execve is not changed.
2At present, the size of the buffer is one page or bytes.

hold its private BlueBox state which can change as
the process executes. More discussion on BlueBox
process state is given in Section 4.3. When a process
forks, the child process shares the parent’s policy but
will be given a copy of the parent’s BlueBox state. A
process’s BlueBox state will be reset when it execves
a program.

4.2 Rules for Different Types of Resources

In this section we will discuss rules for three types of re-
sources, namely file system objects, uid/gid lists and sig-
nals; each has particular syntax and semantics. We be-
lieve the syntax and semantics discussed here can represent
most, if not all, of BlueBox rules.

4.2.1 Rules for File System Objects

Rules on file system objects are encoded as a tree which
mimics the hierarchy of files on a UNIX system. The policy
of a program includes one such tree encoding the program’s
access rights to file system objects. Figure 2 shows a part of
the specification of rules on file system objects for Apache
2.0 HTTP Server.

Each node in the tree records access rights to a (set of)
file system object(s). The root of a tree corresponds to the
root of the hierarchy of files. Like a UNIX file system, each
node has a name. Unlike a UNIX file system, the name
can contain UNIX shell–like wildcard characters ’*’ and
’?’ with the same interpretation as in a UNIX shell. The
only exception is that a leaf node with the name “ ” repre-
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sents an entire subtree; for example, “ ” matches any
file in the subtree under “ ”. Limited support for char-
acter classes (e.g., ) is also provided3. A node’s name
can also contain environment variables and these are eval-
uated when the policy is being loaded into the kernel. For
example, if a rule is “ ”
and the value of is “joe”, then the process will have
read access to all HTML files under .
When a process makes a system call to access a file system
object, the object’s absolute pathname is matched against
the tree. If a path in the tree matches the object’s pathname,
then the access rights in the last node of the path determines
if this invocation of the system call is allowed.

Besides the usual read, write, execute,
create, append, access rights to a file system objects
also include : delete, hard link to, soft
link to, shared lock, exclusive lock,
truncate. There are also rights related to directories
used as file system mount points : (a) mount point :
a directory can be a mount point, (b) unmount: a file
system mounted on a directory can be unmounted; and
rights related to swapping devices (c) swapon : a device
can be a swapping device, (d) swapoff: a device can be
released from being a swapping device.

A node in the tree may also be associated with a list of
uid’s and a list of gid’s (see Section 4.2.2). These lists are
the allowed new user and group ownerships for file system
objects matching the node.

3Character ranges (e.g., - ) and the character ’ ’ are not allowed
in a character class.

4.2.2 Rules for Identities

Rules on identities (uids or gids) are encoded
as lists of singular integers and ranges4 such as

. The basic opera-
tion on such a list is to check if a specific integral value is
in it.

Each program’s policy has an uid list and a gid list. These
lists are the new identities a process running the program is
allowed to assume. A process has three types of identities
: real, effective and saved [MBKQ96]. Since a process can
freely exchange the values of different types of ids or assign
one to the other, the BlueBox enforcer does not make a
distinction among the three types of id’s when checking
the rules. In other words, when a system call requests new
uid’s or gid’s, the enforcer only allows one of the following
two cases :

1. the uid’s/gid’s are in the set of uid’s/gid’s which the
process already has, or

2. the uid’s/gid’s are in the process’s uid/gid list and if
the following condition is met: if the process’s
has gone through the transition “

” and asks to
change its to , then equals . This condi-
tion is meant to prevent an attacker from hopping over
different uid’s.

An integer list can also represent rules on system re-
sources with integral values such as scheduling priorities,
etc..

4It may contain non–negative and negative integers; e.g., uid’s could
be negative or non–negative.

6



pathname access permisions creation mode

/* r:read, w:write, x:execute, c:create, a:append */

/* share libraries */
/etc/ld.so.* r
/lib/* r

/* system configuration files */
/etc/host.conf r
/etc/hosts r
/etc/passwd r
/etc/group r
/etc/resolv.conf r

/* Apache files */
/usr/local/apache2/conf/* r
/usr/local/apache2/htdocs/*.html r
/usr/local/apache2/logs/error log rwca 666
/usr/local/apache2/logs/access log wca 666
/usr/local/apache2/logs/referer log wca 666
/usr/local/apache2/logs/agent log wca 666
/usr/local/apache2/logs/httpd.pid rwc 644
/usr/local/apache2/cgi-bin/* rx

Figure 2. Partial rules for Apache file access

4.2.3 Rules for Signals

Rules for signals are encoded as a bit–mask5, which is an
array of unsigned integers used as bit–vectors and repre-
sents a set of non–negative integers whose corresponding
bits are . Bits in a bit mask are numbered sequentially,
starting from the LSB of the first integer, numbered zero,
to the MSB of the last integer. Unlike an integer list, set
operations can be easily performed on bit–masks.

For rules on handling received signals, BlueBox puts sig-
nals into four subsets : (1) those can be blocked (CBB), (2)
those can be ignored (CBI), (3) those can be default (CBD)
: their handlers can be the default handlers, (4) those can
be handled (CBH) : their handlers can be assigned by the
process. These subsets can intersect in any possible way.
Since a UNIX/LINUX system does not support other types
of treatment for received signals, if a signal is in only one
subset, then “can be” becomes “must be”. For example,
signals that are only in the CBB subset are signals that must
be blocked. Besides maintaining four bit–masks for the
four “can be” subsets, BlueBox also computes and main-

5Bit–masks are also used to encode the allowed system calls list.

tains the must be blocked subset for performance reasons.
An array of pointers to handlers for the CBH subset is also
maintained; Section 4.3 gives more details on this array.

4.3 Per–Process State

Incorporating process state into rules can protect process
against a much larger number of potential attacks. Several
daemons, especially setuid programs, start out with real
uid as root, setting only the effective uid as a user, while
retaining the possibility of acquiring root state to do privi-
leged operations. If such a daemon is subverted the attacker
can then re–acquire root privileges. One such example is
described in the attack on the wu–ftp daemon in Section.
5. Incorporation of state into the system call checks im-
pacts performance as process state needs to be updated and
checked. We have chosen to have a small amount of pro-
cess state so as to minimize the performance impact. Our
guiding principle is to add state only when absolutely nec-
essary. Parts of the states we maintain are:

Identity state: The main state component we maintain
is the current process identity state. The states we note
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are the initial root state, user state and reroot state
when the process becomes root again. For each state,
there is a separate edition of the rules dictating which
system calls are allowed but all states share the same
set of file system access permissions. Daemons typi-
cally switch back to root state only for a short while to
do a few privileged operations and this can be effec-
tively controlled by just changing the allowed system
calls.

System call count: Another process state component
is the number of times certain system calls are made.
Currently, this is enabled for only the fork and waitpid
system calls. For each call we keep the current count
and maximum allowed. This component is useful in
two situations: First, we can use this to stop DOS
attacks which repeatedly consume system resources
via system calls: e.g. an attacker could repeatedly
fork child processes. The second situation where this
might be useful is in controlling scripts which execute
arbitrary shell commands. Since the shell script forks
processes to execute different commands this can con-
trol the number of commands the process can execute.
While this by itself does not offer more security, it
does so in combination with other rules.

Signal Handlers: Another DOS attack is to have sig-
nals handled incorrectly resulting in errant process be-
havior. This can be done by registering a “wrong” sig-
nal handler . Since there is no way for the IDS to iden-
tify the “correct” signal handler, it assumes that the
first handler registered is the right handler and does
not permit any change to this.

Our philosophy to adding state to the rules is that if we
add state only when there is substantial benefit to be gained
either in strengthening security guarantees or in making it
easier to specify rules for a particular process. We note that
our process state is substantially smaller than the system
proposed by Sekar et. al [SU99].

4.4 Kernel Impact

A very important design criteria for our system was to
minimize the impact on the kernel. The placement of func-
tionality has been carefully done to reduce impact on the
kernel. Our reference intrusion avoidance implementation
on Linux has an intercept at the system call entry point, and
minor hooks in the kernel code for process creation and ter-
mination (the fork, execve and exit system calls). The total
impact on the kernel sources is limited to about 10 lines of
assembly and 20 lines of C code. The rest of the enforce-
ment process and the code to parse, allocate memory for
and install rules are in a completely independent module.
The patches to kernel are very simple and do not change

the semantics of the remaining code nor do they interfere
with other parts of the system. A very valid concern is the
portability of BlueBox across different versions of the ker-
nel: we believe that the points in the Linux kernel which
we have intercepted are very stable and unlikely to change
in revisions of the kernel. On Linux, where it is easier to
allocate memory as pages, each process usually needs no
more than 2 pages (8K) to store all IDS related structures.
Of course, we use only a smaller subset of this depending
on rule size etc. Substantial portions of the rules are shared
by processes and any child thread/process that they spawn.
This can be reduced with elementary optimization.

5 Examples
In this section we illustrate how our framework can be

effectively used to thwart well-known attacks. They also
illustrate how rules for various process can be defined.

5.1 Phf cgi–bin with Apache
The phf cgi–bin script was a sample script which came

with the earlier distributions of Apache as an example of
how cgi–bin scripts could be written. Figure 5.1 shows the
relevant parts of the code for phf script. The script first

/* transform http request
* into options */

/* Remove shell characters
* from options */

escape shell command(
‘‘/sbin/ph options’’);

popen(‘‘/sbin/ph options’’,’r’);

Figure 3. The PHF cgi–bin script

syntactically transforms the incoming http request into a
list of options for a fictional program ph and then spawns
(using popen) a shell to execute ph with the created op-
tions. The escape shell cmd subroutine escapes shell
characters which may be present in the options string. The
fatal bug was that it did not escape the newline ( n) char-
acter: The attack simply ensured that arbitrary command
was executed by passing the new command after a newline
character in the options.

This is a good example of how straightforward it is to
write effective rules. By design, the script invokes two
commands /bin/sh ( while using the popen library call )
and the program /sbin/ph. Thus a very natural set of rules
is to allow read and execute to these files. Besides shared
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libraries, the process accesses no other objects. Marking
these rules as inherited ensures that the process which exe-
cutes /bin/sh can only execute these two programs and the
attack is thwarted. Note that the process can execute these
as many times as it wants.

5.2 Buffer overflow in wwwcount
The wwwcount program is a popular cgi program which

maintains a count of the number of hits on a website and
displays this in a graphical form. This is widely used al-
though in non sensitive web sites. The earlier versions of
the program suffer from a well known buffer overflow at-
tack which can be used to execute arbitrary program on
the web site. It is almost trivial to define the rules for this
script. From the definition, or from an inspection of the
system call audit trace for this process we can derive the
proper file accesses: These are all restricted to a single di-
rectory based on the initial configuration of the program.
No executable is in the rules; in fact, the execve system
call is not in the allowed system call list.

5.3 wu–ftpd buffer overflow
This example illustrates how to use the state maintenance

part of our system to enforce sophisticated checks. wu–ftpd
is the ftp daemon developed at the Washington University
at St. Louis and is one of the more popular ftp daemons in
use today. There have been a number of attempts to model
the behavior of the daemon to detect intrusions [SU99].

At a very high level, the ftp daemon starts running as
root, waits for a user to login by authentication and sets its
effective uid to that of the user. For the rest of this session,
the daemon has as effective uid that of the authenticated
user. It is thus in an unprivileged state, except when it needs
to bind sockets to the well–known ftp data port. Since this
is a privileged port, this bind operation can only be done in
privileged state so the daemon becomes root again. The
only system calls made by the daemon in this state are
socket, bind and setuid to user. Figure 4 describes this
state diagram of the ftp daemon. From this functional de-
scription we can easily identify one portion of the rules for
the ftp daemon. In the initial state it starts as root and is
permitted to make most of the system calls, in the second
state it has a nonzero uid and is permitted among other the
setuid system call to become root again. In the third state
the daemon is only allowed to execute the socket, bind
and setuid to user system calls. Note that this is only a
subset of the entire rule set and illustrates how this thwarts
a well–known attack. This subset of the rules is shown in
Figure 5.

The earlier versions of this daemon were susceptible to
an attack where a regular user authenticated and overflew
the process heap[WUF]. Then, arbitrary code could be ex-
ecuted in the reroot state e.g. spawn a root shell on the

server. Using the subset of the BlueBox rules described
above, we can mitigate the damage due to this attack. The
only system calls the attacker can execute in the reroot
state are the socket, bind and setuid to user; the attacker
has no potential access to the file system objects i.e. all
other sensitive system calls are disallowed. Although there
is no way in the kernel, to distinguish the normal setting
uid to root by the ftp daemon from the user state and the
attacker setting uid to root after the buffer overflow, this is
the best protection one can expect.

The examples that we have described in this section high-
light several important features of the semantics of the rules
in our system. They also illustrate the security guarantees
the system can provide. For instance, in the case of the
phf–attack, the system guarantees that the only executables
are /bin/sh and /sbin/ph. However the attack can make
the system endlessly execute these binaries resulting in a
denial–of–service. In the ftpd example, we are unable to
detect that the buffer overflowed, yet we are able to sub-
stantially mitigate the damage that the attacker can do. An-
other important feature is that the rules for a large number
of programs are very easy to write and can potentially be
done with a single examination of the audit trail. Even in
the more sophisticated example of the ftp daemon, we be-
lieve our approach is substantially simpler than the state
diagram based approach advocated by [SU99].

6 Performance
One of the main design guidelines for BlueBox is to min-

imize the performance impact. Crucial design decisions
about how much state to incorporate into the rules were
driven primarily by how much it impacts the performance
of the process being monitored. The prototypical applica-
tion we use to measure the performance is the Apache 2.0
web server daemon. The results for this daemon are rep-
resentative as it exercises most of the checks implemented
for the various system calls. In fact, many of the compute
intensive system call checks, such as open, read and fcntl,
are used substantially. Other processes will typically use
fewer such calls and hence the performance impact on the
Apache httpd daemon will be an upper bound.

6.1 Testbed

Our tests ran the WebStone benchmark of server perfor-
mance with the following parameters: There is a single
client machine generating load and it has between three and
eight threads generating requests for the server. These were
so chosen such that the resulting load does not saturate the
server with or without BlueBox. The load generated by
the clients is entirely static content. Testing under dynamic
content would result in a larger penalty due to the overhead
of loading rules for each script that is invoked. Both the
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Figure 5. Subset of the state–dependent rules for the ftp daemon.

webstone client and the Apache server were put on a gi-
gabit ethernet to ensure that no effect due to large network
latencies were observed in the results.

6.2 Test Results

Figure 6 shows the performance of the Apache 2.0 web-
server performing with and without BlueBox under vari-
ous server load factors. We anticipate a % perfor-
mance penalty for the Apache 2.0 server running on the
Linux 2.2.14 kernel.

6.3 Bottlenecks

The main performance bottlenecks in enforcing the sys-
tem call checks for the Apache server is pathname resolu-
tion. For each request, the Apache server opens a file and
then uses sendfile to send it over the socket. For each re-
quest, we perform a full name resolution operation to match
the right file name with a node on the tree of file system
object rules to eliminate security holes. This can be addi-
tionally optimized by caching and marking certain names
as fully resolved. Another way to reduce this overhead of
name resolution is to have mandatory access control type
labels [DoD85, SEL] on file system objects and move the
check entirely to the file system i.e. the file system will
check the labels for permission before it opens the file.

The results shown in Figure 6 were generated entirely
using static content. Dynamic content requires the server
to load another process and thus load the rules for this new
process which adds to the performance penalty. This can
be somewhat mitigated by caching the data structures rep-
resenting rules for frequently used cgi–bin scripts. We are
in the process of implementing this in the BlueBox imple-
mentation on Linux.

Using these optimizations, we expect that the perfor-
mance penalty for the Apache daemon will be close to 5%.
We believe that this penalty is not excessive given the se-
curity guarantees one can obtain using this system.

7 Conclusion

We have presented Blue Box, a simple system for sand-
boxing applications which can substantially mitigate secu-
rity exposures of processes. We believe that our system is
a simple and comprehensive way to incorporate checks on
the execution of programs at the time of invocation of sys-
tem calls. We have described rules for important servers
such as the Apache daemon, and a number of popular cgi–
bin scripts; these rules can be used as templates across in-
stallations with new rules written for the individual scripts.
Our rule syntax and semantics are simple and yet quite ef-
fective in catching a large number of known attacks. Since
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Figure 6. Performance of the Apache 2.0 with and without system call checks

performance has been a motivating factor in our design, we
have achieved our security guarantees with minimal impact
on the performance.

On a much larger scale, we believe that much more ef-
fective security can be achieved by integrating the attack
signature based systems, statistical profile based systems
and the sandboxing systems such as the one described in
this paper. Depicted in Figure 7, the signature based ap-
proach detects attacks from the outside, the statistical pro-
file approach detects anomaly inside, and the sandboxing
approach stops attacks on the boundary.
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Appendix

A Harmless System Calls
Each of these system calls either has no security impli-

cations or is not supported by the Linux 2.2.14 kernel.

afs syscall lstat64
alarm mpx
break msync
brk nanosleep
capget newselect
chdir oldfstat
fchdir oldlstat
fdatasync oldolduname
fstat olduname
fstat64 poll
fstatfs prof
fsync query module
ftime readlink
get kernel syms sched get priority max
getcwd sched get priority min
getdents sched getparam
getegid sched getscheduler
geteuid sched rr get interval
getgid sched yield
getgroups setitimer
getitimer sgetmask
getpgid stat
getpgrp stat64
getpid statfs
getppid stty
getpriority sysfs
getresgid sysinfo
getresuid syslog
getrlimit time
getrusage times
getsid uname
gettimeofday ustat
getuid vfork
gtty vhangup
lock vm86
lstat wait4

Table 2. Harmless System Calls
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