Document informati

Software version: 5.3

Operating system(s):

Software edition

Standard

Reference #: T1010383 Modified date 2009-06-30

AIX

IBM.

NIM Setup Guide

Technote (FAO)

Ouestion This is a guide intended for those who are new to NIM and would like an easy to follow start to finish setup guide.

Answei

IM SETUP / HOW TO / TROUBLESHOOTING		
The Starter Guide		
Storm M Harris		

N

Introduction Nim A-Z in AIX 5L What this guide does and does not cover Does Cover Does Not Cover Key Words and Definitions Initial NIM Master Configuration Full Manual Setup Setup of NIM Using EZ-NIM Basic Startup Method Nim Resources Commonly Used lppsource SPOT mksysb bosinst_data image_data Not-So-Commonly-Used machine groups resolv_conf script fb_script exclude_files installp bundle Removing Resources Define nim clients Using the NIM master to define a client Using 'niminit' from the client Installing a nim client Installation Types <u>rte</u> mksysb spot update_all / single fileset install Installation Methods push force push pull Troubleshooting

NIM Setup and How-To Outline

Introduction

This guide is intended for those who are new to NIM, haven't worked with NIM in a while and need a refresher, or need some support with some common NIM tasks. This is also a guide intended for those who hate walking through setup guides. I've tried my best to balance out the *yawn* aspect of every other guide and make this something you'll actually recommend to others.

This also is in no way an official publication and is intended as a tool to help with those who are interested in having a starting point in learning and becoming proficient with NIM. As with my other guides I try as much as I can to not use a lot of "technalk" and keep it as reader friendly as possible. As always, please feel free to make suggestions on both to import and planter and any procedures you would like to see added in the future, let me know and l'Il do so. Finally, if I get anything wrong don't hesitate to call me out on it and l'Il have it fixed ASAP. Though this is intended to be a great reference and training guide, I'm just trying to have some fun with teaching people how to setup NIM - so don't expect a boring read.....bopefully you'll be impressed with how easy NIM can actually be.

For a more advanced, "official," or higher level guide you can check out the recently released redbook

NIM From A-Z in AIX 5L

Just go to http://www.redbooks.ibm.com/ and type in SG24-7296-00 in the search field on the upper right hand side of the page.

In ALL references from here on out through the rest of the guide, I am going to presume our "NIM master" machine is a dedicated "NIM master" and nothing else. I would not recommend having your #1 super-important business critical no I can't reboot this system for 93 more days system as your NIM master. If you are in a position where

vou don't have the luxury of having a dedicated NIM master. follow your normal business practices in cases where I might say things such as "its ok if we corrupt this file, we can just reboot the system and fix it." You know your environment better than I do.

Finally, there always will be someone to tell you how you should appropriately type out "commands to be executed." Some people prefer that commands are put in single quotes, others prefer that they're in italics.....whenever there is an actual command to execute, it will look just like your command line interface on your AIX system

For example if I want you to do a listing of files in a directory I would have

19 - 21

Interfer to do it this way because this is exactly what you'll see when you type it in (and ok it's also easier to cut and naste the commands from my test system into this document once I've verified they work correctly). System SMIT screens and expected output will be displayed in the same manner

What this guide does and does not cover :

Does :

- SMIT and Command line processes for most of the operations I cover - Setup of the NIM master environment - Setup of various resource types - Setup and installation of NIM clients - Backing up and installation of maintenance to NIM clients

Does not (and my reasons why) :

- Any websm interface procedures on how to use NIM. Websm is not used enough to spend any time going into separate sections on how to use it ... and it hangs my test system when I bring it up so ... no websm for you!

- Diskless and Dataless clients. These were pretty much phased out for all intents and purposes, then they phoenix-like rose from the ashes and have all sorts of new "mk*" commands associated with them. Even as such, since they tried to revive the use of them I still haven't had anyone ask about using them, so I've opted not to devote any time to them.

- Alternate Disk features. Ed like to cover this here, but Eve onted to add this to my next NIM guide which covers more intermediate level NIM tasks

- NIM communication information (including nimsh and firewall issues). Again, I just don't have time to get into this with this guide and have it finished in a reasonable timeframe. It will be included in the next one.

- nimol (NIM over Linux). Since the introduction of nimol I think I've only had one or two calls on it. It's just not used and besides, once you're an expert in NIM, nimol shouldn't be too difficult to pick up.

- nimdef. The 'nimdef' command is an "easy way" to setup a NIM master and environment by using a template file. This goes against this whole guide as far as "learning" the setup process and about the NIM environment. I've also had no calls on it, so it falls under the 'unused'' category in my book, and therefore will get no recognition.

- Blades (JS20/21 etc). Again. the differences are there, but not enough to go into a whole section on it. Also, much like the others, it falls in the "not used enough" category

- CSM. The "csm nim" stuff (much like pssp) is irrelevant to this guide. The SP/REGATTA team handles this piece of it so if you need or would like information on that, they can provide it to you

Key words and definitions

If you are unfamiliar with NIM I highly recommend reading through this section and also use it as a reference while reading through this guide. If you're figuring ."eh he'll explain all this later so I'll just skip this part," you're going to be flipping back to this part all mad later thinking, "ok fine so I should have read through this before...."

So this is sort of like a "reverse-glossary". Have it before any of the "How to" portions of the guide because it is important to know what it is we are talking about. I'll give the best and easiest to understand description of these terms so that you'll hopefully have a much easier time understanding any new concepts you're unfamiliar with. In all cases - actually using the files/keywords are handled in greater detail in their corresponding "How To ... " sections

Important Files and Directories:

This file will exist on the NIM master when a NIM operation is executed that require a client to boot, this file will be empty (except for the pre-existing commented section). This file will be determined by the NIM master when a NIM operation is executed that requires the client machine to boot from a NIM SPOT. If this file contains incorrect information about either the master or the client, the boot operation will fail. While this file "can" be edited manually to fix a bootp issue - it should not be, as you are only applying a "band-aid" fix to an existing issue in your NIM environment...but, sometimes it's 5pm on a Friday and you're ready to go home, right ? (Also note related entry 'bootp')

- /etc/exports

- /etc/hootntah

This is not a "NIM specific" file, it is a NIM critical file. Any sort of installation, boot, mksvsb, saveye... etc operation requires the use of NFS. This file will be updated with which locations are NFS exported from the master to the client and the permissions associated with those exports. If these entries are incorrect or incomplete you will run into boot failures, permission problems, and other errors commonly associated with NFS. This is a text file and also "can" be edited manually to sometimes "band-aid" a problem, but should only be done so with care in knowing exactly what you're doing. The good thing is, if we mess up this file we can remove it and recycle NFS. The file can be recreated.

/etc/hosts

While not a "INIM specific" file, it is also a NIM critical file. This file is sort of like a phone book. It gives a relationship between a system's hostname and an ip address. Much like a telephone, if you dial the wrong number you get the wrong person. In NIM, if your ip address does not match up to the correct hostname, your install fails. This is a text file and can be edited manually. There should also only be 1 entry per ip/hostname. I personally prefer to make sure my NIM master has all entries in the /etc/hosts file and are of the following format <inadress> <shortname> <lononame>

If the client machine is up and running, it should also have a good entry in there for the NIM master as well.

- /etc/niminfo

This file should always exist on the NIM master and sometimes will exist on a NIM client. On the Master : This file is built when you first initialize the NIM environment. This is simply a text file so feel free to 'cat' or 'more' the file and look at the entries included in there. You do not want to manually edit this file if there is a mistake in the definition of the master. In this case you will want to redefine the master, or use the feature in NIM to change the master's attributes (hostname, gateway etc). On the Client : This file is "optional" depending on what sort of operations you are performing on the client. If the NIM client is up and running, and you intend to perform operations on the client (like take backups, or install maintenance) you will want to make sure this file exists. This file contains not only hostname information for the client. but tells the client who its master is

This also should not be edited manually. If there is incorrect information in the file, it should be removed and recreated

- /tftphoot

This directory should always exist on the NIM master. The main purpose of this directory is to hold the boot images that are created by NIM when a boot or installation is initiated. This directory also holds informational files about the clients that are having a boot or installation operation performed. The file names that are generated in both cases are very descriptive file names For example

The boot image created might be named : 53_spot.chrp.mp.ent.

The format of the file name is <spotname>.<system architecture>.<processor>.<adapter type> The client info files are antly named : <clientname> info

The NIM master will create the <client hostnamename> file and link it to the boot image. This boot image is what is sent over to the NIM client during a boot/installation operation

Important NIM Commands :

This is the command line interface that performs all NIM operations. The 'nim' commands that do various operations are easy to figure out, but you typically don't see people use them that often because they can be really long commands. For most operations we will discuss in this guide I will try and give you the command line as well as 'smitty' ways to perform the function

The easiest thing to do is understand the format of how to use the command and you're good to go. Take a look at it below

nim { -o Operation} [-F] [-t Type] [-a Attribute=Value . . .] {ObjectName}

Easy enough right. There are about 25 or so different operations you can perform, and you'll only regularly use maybe 10 of them. I'll go over the more common in the chart below, the rest can be found in the manpage if you're interested. Again, in this guide, we will only be reviewing flags and operations that are the most commonly used. Once you master these you should have no problems understanding the rest

allocate	Allocates a specific resource to a client.
alt_disk_install	Sets up for an alternate disk installation.
bos_inst	Sets up or kicks off a BOS installation. (i.e. rte/mksysb, pull/push)
check	Allows you to check the various states of a NIM object.
cust	Allows you to perform software installation to an object.
deallocate	Deallocates resources from a NIM client.
define	Defines a new NIM object. (resource, client, networketc)
fix_query	Allows you limited 'instfix' functionality against a NIM SPOT.
lppmgr	Allows you to run a cleanup against an lpp_source in NIM.
Islpp	Allows you to use the 'lslpp' command against the SPOT to determine filesets installed into that resource.
maint	Allows software update/remove/reject/commits to be performed.
remove	Removes a resource definition from the NIM environment
reset	Attempts to reset a NIM resource state to "ready for NIM operation".
unconfig	Will unconfigure NIM from the current master machine.
unconfig	will unconligure islivi from the current master machine.

Common NIM -o {operation} values

Continuing with the command you see the "-F" flag. This is commonly known as a "force." Typically you should only need to use the "-F" flag with the "reset" operation. I won't make a chart for the [-t Type] simply because, as you'll see later, they are pretty easy to figure out. The [-a Attribute]...] and {Object Name} are also easily remembered once we get to the section on the nim command and see some examples

kin : This is going to be the command that provides you information about the various NIM objects in your evers would start bleeding from the stress - we don't want

With this command we'll simply be listing out the most useful commands and how to use them. They'll be covered throughout the entire guide so take note of them as you go along.

Allocate/Allocation :

that

Important Keywords :

This process is what allows your NIM client to access resources in NIM. The master uses NFS to perform the allocation process. Resources can be allocated to one or more NIM clients at the same time. You can see which resource types are allocated to clients by using the following command

lsnim -a spot

clientA: spot = 53H spot

ClientB:

spot = 52Q_spot ClientC:

spot = 53E_spot

So we can see, Client A has a SPOT called 53H spot allocated to it. ClientB has a SPOT called 52Q spot allocated to it, and ClientC has a SPOT, 53E spot, allocated to it.

Base Operating System Installation :

Also commonly called (and referred to from here on out) as a bos_inst operation. This simply refers to the fact that you are initiating a boot and installation to a client machine. There are other installation types that do NOT require a boot. A bos_inst operation always means a boot of the client machine is involved.

This is the initial communication made between the NIM master and client during a boot or bosinst operation. In order for this to be successful several factors must be met

- 1. bootpd must be running on the NIM master
- the NIM client and master must have correct in information about each other
- the /etc/bootptab must be populated correctly

4. - If the master and client systems are on separate networks, the router must be set to forward bootp packets. There are other causes of failure, but checking/verifying those 4 will solve most bootp issues.

Tftp (Trivial File Transfer Protocol): When the NIM client has been rebooted for a boot or bos_inst operation you don't have access to normal TCP communication. Once bootp connection has successfully been achieved, the NIM master uses the to transfer over the <clientname>.info file and the boot image to the client.

if1= : Or interface 1

This is known as the 'nim network'. Every machine, even the master, is placed on a defined NIM network. A machine who has multiple adapters defined to NIM will have 'if2=" and "if3="etc attributes. Not all adapters on a client need to be defined in NIM, only the ones that you wish to use with NIM. When your NIM master is generated, you will create a network name for the master and every client on the same subnet as the master. If you name this network 'master net" for example, then all clients on the same subnet as the master will have their "if1=" line set to "master net". If you add additional clients that are on separate subnets, then you will need to create new network names. You can see the "ifl=" information from an

lsnim -1 master |more

-or-# lsnim -1

You can get further information about the network name by running an 'lsnim -l <network_name> Having incorrect networking information is probably the leading cause of NIM installation failures. This attribute and the information used when creating networks is extremely important to make sure you have correct

Client (nim client) :

Any standalone machine or lpar in a NIM environment other than the NIM master. Clients use resources that reside on the NIM master to perform various software maintenance, backup, or other utility functions. *Note that NIM resources do not always have to reside on the NIM master, but for our purposes they all will.

Groups (machine groups): In the spirit of convenience you can create a machine group which consists of a number of NIM clients. All NIM operations initiated from the master to that machine group subsequently are performed to all machines that are part of that group. For example, you can define a machine group and call it "Group1". Group1 has ClientA, ClientB, ClientC, and ClientD in it. You can initiate a bos_inst operation to each individual client, or if all clients are being installed with the same image, you can initiate the bosinst operation to Group1. All client systems will be installed at the same time. The downside to this however, is that you sacrifice performance for convenience. It is best if you decide to use machine groups to test out what sort of load your network and NIM master can hold before seeing diminishing returns.

Master (nim master) :

The once and only one machine in a NIM environment that has permission to run commands remotely on NIM clients. A client can only have one master, and a master can not be a client of any other master. The NIM master must also be at an equal or higher OS/TL/SP level than any client in the NIM environment. The NIM master also can not create SPOT resources at a higher level than it is currently installed at. Finally, the NIM master can not install any clients with an OS/TL/SP higher than his own. Long story short, for all intents and purposes, for any NIM operation, make sure you master is at an equal or higher level The NIM master also will hold all of our NIM resources. Due to this we'll want to make sure the NIM master has plenty of space available to it. Ideally, having a separate volume group (nimvg) is beneficial, so the rootyg does not get out of control in size.

Resource (nim resources) :

This can be a single file or up to a whole filesystem that is used to provide some sort of information to, or perform an operation on a NIM client. Resources are allocated to NIM clients using NFS and can be allocated to multiple clients at the same time. Various resource types will be explained below. I've decided to order them in a logical order of description rather than alphabetical order. It should make more sense to read through them in this manner.

Resource (nim resources) lpp source:

When running an installation of a system outside of NIM, you use an installation CD. NIM uses resources. Two of the most important resources are made using the installation CD. First of all let's understand what exactly is on an installation CD that allows us to install a system. There are 4 parts - The filesets that get installed.

- The .toc file so the system knows what filesets are on the media

- The boot images so the CD can boot the system initially A /usr filesystem to run the commands needed to install the system.

The lpp source is created from an AIX installation CD and is responsible for holding The filesets that get installed.
 The tic files on NIM knows what is available in the lpp source to be installed to the client.

In short, the lpp_source is simply a depot. It's just a directory that holds all of the filesets and the .toc file.

Resource (nim resources) SPOT:

The SPOT resource (stands for Shared Product Object Tree in case you were wondering) is responsible for the following - Creating a boot image to send to the client machine over the network. - Running the commands needed to install the NIM client.

Essentially the SPOT is a /usr filesystem just like the one on your NIM master. You can think of it as having multiple "mini-systems" on your NIM master, because each SPOT is its own /usr filesystem. You can upgrade it, add fixes to it, use it to boot a client system...et. Just like your NIM master's /usr filesystem; going in there manually and messing around with files can easily corrupt it. The good thing about a SPOT however, is that it is easily rebuilt. You can also create a SPOT from a NIM mksysb resource. This SPOT however is not as versatile as one created from an lpp source and can not be upgraded with any fixes and can only be used with the mksysb resource it was created from.

Resource (nim resources) mksysb: This is simply a mksysb image of a machine. The mksysb image can be of the NIM master, a NIM client, or a machine outside of the NIM environment. This resource can be defined in one of two ways. - From an existing mksysh taken to file that resides on the NIM master Creating a new mksysb image of a currently existing NIM client. At this time there is no supported way to use a mksysb tape or mksysb on CD/DVD, as an input device to define a mksysb resource in NIM.

Resource (nim resources) bosinst data:

When booting from installation media to install or upgrade a system you boot to what are known as the "BOS Menus" or Base Operating System Installation Menus. Here you select your console, what language to use, what disks to install to....and many other options. In NIM we can create a "bosinst_data" resource that will answer these questions for us. By doing this we can perform a "non-prompted" installation. So if you have a NIM client in another building, down the road, or half way across the country, you can create this type of NIM resource which will provide the answers to those questions, so once you kick off the install from the NIM master no further interaction is required. The system should (ideally) install and reboot itself afterward.

A mksysb (as discussed above) has a "built in" bosinst.data file. If the option in that file

(PROMPT =) is set to yes, this file really does nothing as the choices you make in the BOS menus will override the options in the file. However, if the mksysb was created to have that option set to no, then we can create a new bosinst data resource which will trump the one that is part of the mksysb.

Resource (nim resources) image data: Outside of NIM this file is responsible for knowing how your rooty is built. It contains information like the partition size of rooty, the disks belonging to rooty, all of the filesystems (and their sizes) that belong to rooty, whether the rooty is mirrored, and other information. As with the bosinst_data file, a mksysb also has one of these "built in". If this built in file needs to be altered in any way, we can accomplish this by creating and allocating an image_data resource.

Initial NIM Master Configuration

We're going to bypass any further discussion other than at the introduction of this guide concerning the who/what/why/when/where of choosing a suitable NIM master. That's totally up to you and I've already mentioned that it ideally shouldn't be a system you're not able to play with and reboot at will. The only thing we need is space. Make sure you have space directly related to the size of the NIM environment you want to have.

Some choose to create a different volume group (i.e. nimvg) and house everything NIM related in that volume group. This is usually a good idea if you're looking at a very large environment as you typically want to keep your rootyg as small as possible. If you do not have that luxury - no problem, feel free to house your NIM environment in rootvg

There are a 3 options you have for the initial setup which I will go through in this section.

Totally manual setup for the whole environment. (My personal recommendation because you end up learning more).
 Setup using EZ-NIM

3. Setup using a basic startup method.

For future reference, all further mentions using the word "media" will refer to Base AIX Installation CDs, unless otherwise specified.

For simplicity, all references for any device (cdrom, ethernet, tape...etc) will always be cd0, ent0. rmt0...unless otherwise noted. You may, depending on your environment, need to use other devices...substitute as needed

Full Manual Setup of NIM

As I mentioned earlier, going through this at least once is definitely recommended. Manually creating the master and defining resources will get you comfortable with the environment and most importantly, you learn much more as you go this way.

Installing the required filesets

You will need Volume 1 of your Base AIX Installation media CD. If you have a directory where you've used the bffcreate utility to copy down the contents of the media to disk, that is fine as well. What we're looking for basically is the base level versions of the NIM filesets.

There are 3 filesets we will need to deliver the NIM software to our future NIM master

- 1. bos.sysmgt.nim.master
- 2. bos.sysmgt.nim.client 3. bos.sysmgt.nim.spot

Put Volume 1 of your media in the drive and from and command line you can run the following command to automatically grab all 3 required filesets in the nim package

installp -acgXd /dev/cd0 bos.sysmgt.nim

Using SMIT

ŧ	smitty install all	
*	INPUT device / directory for software	/dev/cd0
*	SOFTWARE to install	[bos.sysmgt.nim
	PREVIEW only? (install operation will NOT occur)	no
	COMMIT software updates?	yes
	SAVE replaced files?	no
	AUTOMATICALLY install requisite software?	yes
	EXTEND file systems if space needed?	yes
	OVERWRITE same or newer versions?	no
	VERIFY install and check file sizes?	no
	DETAILED output?	no
	Process multiple volumes?	yes
	ACCEPT new license agreements?	no
	Preview new LICENSE agreements?	no

Initializing the nim master :

This is basically going to tell the system, "Hey ... you're a NIM master". Easy right

Command line :

nimconfig -a pif_name=en0 -a master_port=1058 -a netname=master_net -a cable_type=bnc

nif name = This is your primary interface for your NIM master

netrame = Name your master's network. With NIM you want to give objects names that are easy and descriptive. If I see "master_net" I know for that is my NIM master's network. Using a name like "NetworkA" doesn't really tell you anything just by the name itself. The rest of the options are default options.

SMIT :

smitty nimconfig

smitty nim
=> Configure the NIM environment => Advanced configuration => Initialize the NIM master only

```
* Network Name [master_net]

* Primary Network Install Interface [en0]

Allow Machines to Register Themselves as Clients?

Alternate Port Numbers for Network Communications

(reserved values will be used if left blank)
```

Client Registration [] Client Communications []

Once this is complete you have a functioning NIM master. Take a look at the following output and you'll see information about your master

lsnim -1 master

Look at this next output and you'll see that by defining the NIM master you have some resources that have been pre-generated for you.

lsnim -l |more

The "boot" resource created a /thpboot directory to hold all of your boot images. There's also a nim_scripts" resource. That belongs to the master. Do not go into the /export/nim/scripts and mess with any files that get generated during an install. Finally, there's a "master net" which represents the NIM network we created earlier. All NIM clients that are on a different network, then you will need to generate a new network rame for that network. More on that a little later. Now we'll go into defining your lpp source and SPOT resources.

Setting up your first lpp_source resource :

Before we get your lpp_source and SPOT defined we'll need to decide on a place to put them. One of the best things you can do in NIM is be neat. An organized NIM environment is a happy NIM environment. I recommend having separate filesystems for separate releases for exposite the second s

crfs -v jfs2 -g nimvg -m /export/nim/lpp_source -a size=5G

This will create a jfs2 filesystem in nimvg with a size of 5gig and have a mountpoint of /export/nim/lpp_source. Again, this is just an example. Feel free to use rootvg or another volume group. If this command does not fit your environment you can go into :

smitty crfs

... and create your own filesystem using whatever parameters you need

We then mount up the filesystem

mount /export/nim/lpp_source

The lpp_source is now ready to be created. We'll need Volume 1 of your base media in the drive. The minimum you'll use is V1 of the media. You can put 1, 2, 3, or all volumes in the lpp_source. You're looking at a trade off of space and convenience. I recommend at least having volumes 1-3 if you're concerned about space. Ideally, and in this example environment, you want to create the lpp_source using all volumes of media. If you are to present the space is the space i

From command line :

nim -o define -t lpp_source -a location=/export/nim/lpp_source/53_05 -a server=master -a comments='5300-05 lpp_source' -a multi_volume=yes -a source=/dev/cd0 -a packages=all 5305_lpp

Yes, that would be 1 command. That is one of the reasons many NIM operations are done from SMIT. It's really easy to mistype something, especially if communicating over the phone with someone in a noisy server room. Now, to break down the command : The only 2 required fields are the "location" (where we want it to be created) and "server" (which machine will hold this resource). You can hold resources on other NIM clients but for our purposes we will always hold resources on the NIM master. The rest of the "-a" flags are optional. You may think - 'wait a minute....the source has to be required, otherwise, where do you get the fliesets from ?'You can "pre-generate" the lpp_source. If you've already copied the fliesets down into a directory and want to use that as your lpp_source, then you have no "source", you just have a "location". At the end of the command, I named the resource "\$305_lpp". This is what NIM uses to reference this resource. We will use smit to do the same thing.

From SMIT :

smitty nim_mkres
-or# smitty nim

=> Perform NIM Administration Tasks => Manage Resources => Define a Resource

Next you select "lpp_source" as the resource type.

Notice there isn't an option for multiple volumes. For the most part smit and command line are the same, but occasionally there are differences. Doing it this way will only create the lpp_source from VI of the media. If you wish to add other volumes you can do one of the following A) bffcreate the volumes into the lpp_source from VI of the media. If you wish to add other volumes you can do one of the following B) use NM to add the volumes

5 of 26

smitty nim_res_op			
or-			
smitty nim > Perform NIM Administration Tasks => №	Manage Resources =>	Perform Operations on	Resources
elect your lpp_source elect "update"			

TARGET lpp source 5305 lpp SOURCE of Software to Add (all) -OR-INSTALLP BUNDLE containing packages to add [] gencopy Flags DIRECTORY For temporary storage during copying [/tmp] EXTEND filesystems if space needed? Yes Process multiple volumes? Yes

Either way, you will get the same result. How to we take a look at the lpp_source ? We use the 'lsnim' command.

lsnim -1 5305_lpp 5305_lpp: class = resources
= lpp_source
= 5300-05 lpp_source type comments arch = power Retato = ready for use prev_state = unavailable for use = /export/nim/lpp_source/53_05 location simages = yes alloc count = 0 server = master

Important lines

Rstate = if this is not set to "ready for use" then you can not use this resource. Sometimes running a check on the lpp_source will allow you to clear this up.

nim -o check

simages = This means that this 1pp_source has the proper system images in order to properly build a SPOT resource. If any required system image filesets are missing from the 1pp_source they will typically be listed at the bottom of the output.

Why wouldn't you want all lppsources have the "simages" attribute to be "yes" ?

Alppost can have pretty much anything you want in it. It doesn't have to be built from base installation media, nor does it have to be used to only build a SPOT. Let's say you have your 5300-05 lpp_source, build a SPOT from it, and build some systems. You then order some service pack updates (5300-05-01) for example. You can update your current lpp_source, but if you do that all of your future installs using this will be at 5300-05-01. If you do not want this to be the case, you can create another lpp_source that only holds these updates. It is more of a preference issue than anything else.

Next, we move on to creating a SPOT resource.

Setting up your first SPOT resource :

Now we will create a filesystem for our SPOT. This does not have nearly the space requirement that an lpp_source does. 500meg should be plenty of space for your initial SPOT. If you recall, the SPOT is just like a /usr filesystem. When you install your system from CD-ROM not every single fileset gets installed to the system right - only what is necessary to run the system. The same applies for the SPOT.

crfs -v jfs2 -g nimvg -m /export/nim/spot -a size=1G

We then mount up the filesystem :

mount /export/nim/spot

From command line :

nim -o define -t spot -a server=master -a source=5305_lpp -a location=/export/nim/spot -a auto_expand=yes -a comments='5300-05 spot' 5305_spot

Here you minimally have 3 required fields. You need to let the NIM master know who will be holding the resource (again, you can use a NIM client as a resource server, but that is rare, and for our purposes, it will always be the NIM master), you need to give it an lpp_source that contains the "simages=yes" attribute, and you need to give it a location to build the resource.

The "auto_expand=yes" is recommended because this allows the system to automatically expand the size of the filesystem if necessary (instead of failing the operation).

From SMIT:

smitty nim_mkres
-or# smitty nim

> Perform NIM Administration Tasks => Manage Resources => Define a Resource Next you select "SPOT" as the resource type.

* Resource Name [5305_spot] * Resource Type spot * Server of Resource [master] * Source of Install Images [5305_lpp] * Location of Resource [/export/nim/spot] Expand file systems if space needed? Yes Comments [5300-05 spot]

This will take a while to create as it is typically installs 300+ filesets into the SPOT resource. Once this completes you can check the output of the Isnim command to see information about the SPOT.

# lsnim -1 5305	s	pot
5305_spot: -		
class	=	resources
type	=	spot
comments	=	5300-05 spot
plat_defined	=	chrp
arch	=	power
bos_license	=	yes
Rstate	=	ready for use
prev state	=	verification is being performed
location	=	/export/nim/spot/5305_spot/usr
version	=	5
release	=	3

= 0 = 5300-05 mod oslevel_r alloc_count = 0 server = master Rstate_result = success mk netboot = yes mk netboot

Important lines

Ristate = if this is not set to "ready for use" then you can not use this resource. The first thing you'll want to do is run a force check against the SPOT. This forces the rebuild of the boot images and should return the "unavailable for use" back to "ready for use"

nim -Fo check

oslevel r = this works just like the 'oslevel -r' if you ran that from an AIX command line. Knowing the level of the SPOT resource is extremely important in NIM operations we will go into later.

Your NIM master has officially been initialized and setup. The next 2 sections go into alternate (theoretically "easier", but we'll call it "less interactive") ways of setting up the NIM master.

Feel free to review those and/or move on to defining NIM clients.

Setup of NIM using EZ-NIM

EZ-NIM is feature that allows as much of a "hands free" setup of NIM as possible. EZ-NIM also has a list of common operations that it can perform for you. Some people find the lack of interaction a blessing, however if there is an operation you need to perform that isn't in the list provided for you, you might be lost as how to exactly get what you need done. It is best to determine what sort of environment you need before determining whether or not EZ-NIM is for you.

Installing the required filesets

You will need Volume 1 of your Base AIX Installation media CD. If you have a directory where you've used the bificreate utility to copy down the contents of the media to disk, that is fine as well. What we're looking for basically is the base level versions of the NIM filesets. There are 3 filesets we will need to deliver the NIM software to our future NIM master.

- 1. bos.sysmgt.nim.master
- bos.sysmgt.nim.client
 bos.sysmgt.nim.spot

Put Volume 1 of your media in the drive and from and command line you can run the following command :

installp -acgXd /dev/cd0 bos.sysmgt.nim.master bos.sysmgt.nim.client bos.sysmgt.nim.spot

Using SN	MIT :
----------	-------

# smitty install all		
* INPUT device / directory for software	/dev/cd0)
* SOFTWARE to install		
PREVIEW only? (install operation will NOT occur)		no
COMMIT software updates?		yes
SAVE replaced files?		no
AUTOMATICALLY install requisite software?	yes	
EXTEND file systems if space needed?	yes	
OVERWRITE same or newer versions?	no	
VERIFY install and check file sizes?		no
DETAILED output?		no
Process multiple volumes?		yes
ACCEPT new license agreements?	no	
Preview new LICENSE agreements?	no	

EZ-NIM Setup of the NIM Master

smitty eznim
Configure as a NIM Master
Setup the NIM Master envir environment

Select or specify software source to initialize environment Select Volume Group for resources Select Filesytem for resources	[cd0] [rootvg] [/export/eznim]
Options CREATE system backup image? CREATE new Filesystem?	[yes] [yes]
DISPLAY verbose output?	[no]

During script execution, lpp source and SPOT resource creation times may vary. To view the install log at any time during nim_master_setup, run the command: tail -f /var/adm/ras/nim.setup in a senarate screen

What you'll get after the process completes

- resources will be defined in rootvg.
 mksysb resource 5300-05master sysb
- /tftpboot filesystem
- resolv_conf resource master_net_conf
 bosinst data resource 5300-05bid ow
- lpp_source resource 530lpp_res
- SPOT resource 530spot_res 8. resource group basic res grp

Here is a list of the predefined operations you can perform from the EZNIM utility

Enable Cryptographic Authentication Add fixes to the NIM Master environment Add client to the NIM environment Update clients Backup a client Reinstall clients Reset clients Show the NIM environment Verify the NIM environment Remove NIM environment

This concludes your EZ-NIM master setup. Further NIM operations will be discussed later in this guide, and will be done using command line and SMIT. No further EZ-NIM references will be made in regards to performing operations within the utility.

Setup of NIM using the "basic startup" method

This method is somewhere between a manual setup and EZ-NIM. You have more control over the master's setup options than you do in EZ-NIM, but the system still does some of the grunt work (like setting up filesystems) for you.

Installing the required filesets

You will need Volume 1 of your Base AIX Installation media cd. If you have a directory where you've used the bffcreate utility to copy down the contents of the media to disk, that is fine as well. What we're looking for basically is the base level versions of the NIM filesets There are 3 filesets we will need to deliver the NIM software to our future NIM master.

- bos.sysmgt.nim.master
 bos.sysmgt.nim.client
- 3. bos.sysmgt.nim.spot

Put Volume 1 of your media in the drive and from and command line you can run the following command :

installp -acgXd /dev/cd0 bos.sysmgt.nim.master bos.sysmgt.nim.client bos.sysmgt.nim.spot

Using SMIT

# smitty install all		
* INPUT device / directory for software	/dev/cd	10
* SOFTWARE to install		
PREVIEW only? (install operation will NOT occur)		no
COMMIT software updates?		yes
SAVE replaced files?		no
AUTOMATICALLY install requisite software? yes		
EXTEND file systems if space needed?	yes	
OVERWRITE same or newer versions?	no	
VERIFY install and check file sizes?		no
DETAILED output?		no
Process multiple volumes?		yes
ACCEPT new license agreements?	no	
Preview new LICENSE agreements?	no	

Initializing the Master and Initial Lppsource / Spot Resources

From command line :

The command is forever long and actually could be longer. I'm only including it in here for those who might want to get crazy and script a NIM setup.

/usr/lpp/bos.sysmgt/nim/methods/m_setup -w -x -y -S master -f 'en0' -i 'cd0' -1 '5305_lpp' -D '/export/lpp_source' '-A' -J '1024' -G 'rootvg' -s '5305_spot' -E '/export/spot' '-B' -K '512' -H 'rootvg' '-v' '-o'

This initializes my NIM master with a gig for the lpp source, and 512m for the SPOT. The lpp source name is "5305 lpp" and the SPOT name is "5305 spot", both have had their own filesystems created for them. The master's network is given the name "network1" by default.

From SMIT:

<pre># smitty nim Configure the NIM Environment Configure a Basic NIM Environment (Easy Startup)</pre>)	
Initialize the NIM Master: * Primary Network Interface for the NIM Master	[en0]	
Basic Installation Resources: * Input device for installation images * LPP_SOURCE Name * LPP_SOURCE Directory Create new filesystem for LPP_SOURCE? Filesystem SIZE (M8)	[cd0] [5305_lpp] [/export/lpp_source] [yes] [1024]	
VOLUME GROUP for new filesystem * SPOT Name * SPOT Directory Create new filesystem for SPOT? Filesystem SIZE (MB)	[rootvg] [5305_spot] [/export/spot] [512]	
VOLUME GROUP for new filesystem	[rootva]	

There are some other options for diskless / dataless clients and the resources associated with those, but since we're not discussing diskless/dataless we'll skip those options.

Once this process completes your master is setup and ready to start defining NIM clients and running installs. Again, feel free to take a look at your master and the resources with the following commands

lsnim -1 master # lsnim -1 5305_lpp # lsnim -1 5305_spot

Nim Resources: What Are They / What Do They Do ? How Can I Make Them ?

....and other questions

In this section well be discussing all sorts of different types of nim resources. We'll be revisiting the lpp_source and SPOT in greater detail, showing you how to create more resources than you've ever wanted to know about, and introducing you to some of the lesser used resource functions in NIM. Pve broken this section down into 2 areas with their subcategories : Commonly Used

lppsource SPOT mksysb bosinst_data image_data Not-So-Commonly-Used machine groups resolv_conf script fb script exclude_files installp_bundle

There are other resources that are available for use in NIM but most have to do with diskless and/or dataless clients

Commonly used resources

Revisiting the lpp_source resource

By following through this guide you've built an lpp_source by now but lets take a closer look at exactly what it is, and how to treat your lpp_source in the future. For these examples we'll be using the lpp_source we've been using before : 5305_lpp

If you've forgotten the name of your lpp_source there's a handy command that will list out all of the lpp_source resources on your system.

lsnim -t lpp_source
5305_lpp resources lpp_source

Once you have the name run an informational listing against it

lsnim -1 5305_lpp 5305_1pp: Class = resources Type Comments = lpp_source = 5300-05 lpp source Arch = nower Rstate = ready for use Prev state = ready for use Location = /export/nim/lpp_source/53_05 Simages = yes = 0 Alloc_count Server = master

Important information :

Register = This is the NIM state of the resource. If this is not set to "ready for use" then this lpp_source can not be used for any NIM operations. Typically running a check operation on the lpp_source name will reset this to a good state from a state such as "unavailable for use".

nim -o check 5305_1pp

What this does is rebuild the .toc file and verify it has the "simages" attribute. If it does not have the "simages = yes" attribute that simply means that you can not use this lpp_source to build a SPOT or use it for a bosinst operation.

Alloc_count = This will give a numerical value as to how many NIM clients this specific lpp_source has been allocated to. You can find out the specific NIM client names by running the following command :

lsnim -a lpp_source
lucidbso:

lpp_source = 5305_lpp -or-

lsnim -a lpp_source -Z
#name.lpp_source;

#name:lpp_source: lucidbso:5305_lpp:

Adding the -Z simply changes the format of the output - some find it easier to read. Personal preference really.

location = This is the top level directory where your filesets and RPMs are stored. In our case if we look at the contents of our lpp_source location : /export/nim/lpp_source/53_05

cd /export/nim/lpp_source/53_05

total 0			
drwxr-xr-x	5 root	system	256 Apr 11 13:18 .
drwxr-xr-x	4 root	system	256 Apr 15 13:02
drwxr-xr-x	3 root	system	256 Apr 11 13:18 RPMS
drwxr-xr-x	3 root	system	256 Apr 11 13:18 installp
drwxr-xr-x	3 root	system	256 Apr 11 13:18 usr

Following the RPMS/ppc directory you'll see the system default provided RPMS. Following the install/ppc directory you'll see all of the filesets available in your lpp_source. The /usr path follows down to the license arerement.

Next we'll look at all of the different operations you can perform on your lpp_source. You can perform any of these operations through smit by running the following :

milty nim_res_op -or-#smitty nim -> Perform NIM Administration Tasks => Manage Resources => Perform Operations on Resources

We'll go over the options individually : showres = show contents of a resource

nim -o showres 5305_lpp

This will show the contents of this resource. Unlike the 'lslpp' operation, you can use this operation to compare it to the master, another NIM client, or a SPOT resource. The output will be formatted with the filesets listed having a "+" or "@". ""#" = This fileset is not installed on the target

"@" = This fileset is installed on the target *The option to compare filesets to another object is available in the SMIT menu only

lslpp = list LPP information about an object

nim -o lslpp 5305_spot

This is a simple listing of the lslpp output from your SPOT. check = check the status of a NIM object

nim -o check 5305 1pp

This command rebuilds the .toc file of the lpp_source and checks for the "simages" attribute. No output is displayed unless an error occurs.

lppmgr = eliminate unnecessary software images in an lpp_source

nim -o lppmgr -a lppmgr_flags="rubxV" 5305_lpp

You should use this operation when you've added some maintenance/fixes to your |pp source. Since base level filesets and fix level filesets can have the same names, the .toc file can get thrown off with what is really in the lpp source. The lppmgr command allows you to remove any unnecessary duplicate filesets from your |pp source.

update = add or remove software to or from an lpp source

nim -o update -a source=/dev/cd0 -a packages=all 5305 lpp

Use this option to add or remove software from the lpp source (easy right). Typically used when copying volumes of CDs down to the lpp source. In the example above you might use that if you received the latest service pack in and would like to add this to your lpp source. You can also just "cp" or "my" filesets into your /< lop source>/installo/noc directory manually. Remember that you do need to run an loomer command to undate the .toc file. If you have any further RPMS that you would like to add to your lop source. make sure to put them in the <lop source>/RPMS/noc location

How to handle this lpp source concerning upgrades and updates : Given an example lpp source : 5300-44 lppsource sources available to your stat of CDs in that contain 5300-05. Do you add this to your 5300-04_lppsource or do you create a new one ? That all depends on your environment. It is a good lide to keep lppsources available to you as long as you have the need for clients for stat wat that level. If in this example you are planning on upgrading all of your clients to 5300-05, then it might be best to update the existing lpp_source. If you have a number of clients for whatever reason that can not be upgraded, and you have the available disk space, you might be better off creating a separate lpp_source. What it boils down to is environment management. How do you need to run your environment based on your needs and available space...

In cases where you are dealing with different Version or Release levels you must create a different lpp_source. There is no upgrade path for lppsources.

Example : 5200-08 lppsource - you get in some 5300-05 base CDs. You will want to create a new lpp source for that level

Revisiting the SPOT resource

By following through this guide you've built a SPOT by now but lets take a closer look at exactly what it is, and how to treat your SPOT in the future. For all examples we will be using the SPOT we created earlier: 5305 spot

If you've forgotten the name of your SPOT there's a handy command that will list out all of the SPOT resources on your system.

lsnim -t spot 5305_spot resources spot

Once you have the name run an informational listing against it

lsnim -1 5305_spot
5305_spot:
Class = resources Type = spot = 5300-05 spot Comments Plat_defined Arch = chrp = power Bos license = yes = ready for use Rstate = ready for use = /export/nim/spot/5305_spot/usr Prev state Location Version = 5 = 3 Release = 0 = 5300-05 Mod Oslevel_r Alloc_count Server = master If_supported = chrp.mp ent = success Rstate result

Important information :

Rstate = This is the NIM state of the resource. If this is not set to "ready for use" then this SPOT can not be used for any NIM operations. Typically running a force check operation on the SPOT name will reset this to a good state from a state such as "unavailable for use"

nim -Fo check 5305 spot

What this will do is have the SPOT check itself to make sure it has the proper support for, and actually recreate the boot images in the /tftpboot directory.

Alloc count = This will give a numerical value as to how many NIM clients this specific SPOT has been allocated to. You can find out the specific NIM client names by running the following command

lsnim -a SPOT lucidbso: spot = 5305 spot

-or-

lsnim -a spot -Z #name:spot lucidbso:5305_spot:

Adding the -Z simply changes the format of the output - some find it easier to read. Personal preference really

location = This is the location the SPOT has been installed into. If you remember from earlier we discussed how a SPOT is essentially a /usr filesystem. If you ed down to that location and run a listing you'll see pretty much exactly what you'll see if you did a listing from your NIM master's /usr directory.

oslevel r = This tells you the oslevel and latest TL that is completely installed. This is very important information that affects operations like maintenance boots of a NIM client, mksysb restore/clones, alt mksysb operations, and others. We'll go into the specifics when we get into running installations later on.

Next we'll look at all of the different operations you can perform on your SPOT. You can perform any of these operations through smit by running the following

smitty nim res op # smitty nim => Perform NIM Administration Tasks => Manage Resources => Perform Operations on Resources

We'll go over the options individually reset = reset an object's NIM state / check = check the status of a NIM object

nim -Fo reset 5305_spot # nim -Fo check 5305_spot

The reset should only be ran if the current allocation count for that resource is equal to 0. It is preferable however to run a force check on the SPOT instead. The check operation will also rebuild the boot images it serves out to clients at boot time. cust = perform software customization

nim -o cust -a filesets=bos.atm -a lpp source=5305 lpp 5305 spot

The customize operation typically is used to install additional support into the SPOT. If for example your NIM SPOT is missing the device driver for your target NIM client's ethernet card you will have problems with any operation where the client needs to be booted.

showres = show contents of a resource / lslpp = list LPP information about an object

nim -o showres 5305_spot -or-# nim -o lslpp 5305_spot

This does exactly what it says. It shows the filesets that were installed to create the SPOT resource.

The showres is essentially the exact same as the lslpp operation. Used when you want to check the SPOT to see if a specific fileset or fileset level has been installed into it. It is helpful to use the "...] grep <filesetname>" on the end of the shownes or lslpp commands to search for a specific fileset

update_all = update all currently installed filesets

nim -o cust -a fixes=update_all -a lpp_source=5305_lpp 5305_spot

In cases where you wish up update your SPOT with an individual APAR, a service pack, or an entire TL, you will use the customize operation and update_all. First of all you will add the desired filesets into the lpp_source, and as you can see above example command, use that as the "source of installation images". There is a second way through smitty to perform the same operation :

smitty nim_update_all

fix_query = perform queries on installed fixes

There are a few examples of using this feature that we'll look at from command line. I've only found using the SMIT option beneficial if I know the exact APAR number I am looking for. From command line we can run easier searches using 'grep', and get much more useful information

Example 1 : When looking to see what the latest TL is that is installed to the SPOT

lsnim -1 5305_spot

This will show an "oslevel t" line that will give you the highest TL completely installed into the SPOT. If however you expect to see 5300-05 but only show 5300-04, we can use the fix query operation to find out what is missing,

```
# nim -o fix_query -a fix_query_flags="cq" -a fixes=5300-05_AIX_ML 5305_spot |grep ":-:"
```

What this command is doing is listing out all filesets that are part of the 5300-05 TL and grep'ing for any ones that are installed at a lower level (:-; from the grep above) than required. The downlevel filesets will be listed out in the following format

5300-05 AIX ML::::-:AIX 5300-05 Update

Example 2 : When looking to see what the latest SP is that is installed to the SPOT

lsnim -1 5305_spot

Though this shows the "oslevel_r" information, as of right now, it does not show service pack information. That may change in the future, but as of now we need to use the fix_query operation to check the Service Pack level.

nim -o fix_query 5305 spot |grep SP All filesets for 5300-03-CSP SP were found. All filesets for 5300-04-01 SP were found. All filesets for 5300-04-02_SP were found. All filesets for 5300-04-03_SP were found.

This will show all of the SP listings. You can also grep for a specific SP or range of Service Packs with the grep command. From the above listing you can see that there has been no service pack beyond 5300-05 added to the SPOT.

Example 3 : When looking to see if there is a specific APAR installed to the SPOT

nim -o fix_query -a fixes=IY78180 5305_spot
All filesets for IY78180 were found.

If you get a return of "not all filesets found" for your APAR, refer back to Example 1 on how to determine which filesets are missing.

showlog = display a log in the NIM environment

nim -o showlog 5305_spot

This is sort of like a special smit log just for NIM SPOTs. It logs activity or queries against the NIM SPOT. If you're doing most of your work through smit, then this will all be logged in your smit.log so you generally wouldn't need to bother with the showlog operation, however if running from command line, it can help determine causes for any failures.

lppchk = verify installed filesets

nim -o lppchk -a lppchk flags="v" 5305_spot # nim -o lppchk -a lppchk_flags="1" 5305_spot # nim -o lppchk -a lppchk_flags="c" 5305_spot

Since the SPOT is an installed entity, just like your NIM master or any other AIX system, it can run into cases where it has broken filesets, broken links, or missing/corrupt files. They are also fixed in the same manner as you would on any other system using the "Force Overwrite" or "Force Reinstall" options for -v errors, using the "-ul" flags for missing links from "-I" errors, and replacing bad files for any "-c" output.

Alternative : Building a SPOT from a mksysb resource

A NIM SPOT is generally created from an lpp_source. You can also create a SPOT resource from a mksysb image. This was designed to allow for NIM masters that do not have a lot of disk space available to house a whole series of different leveled SPOT resources. Using this method you can store all of your mksysb resources and just build SPOT resources as needed, then remove them once the install is complete. Let's say we have a mksysb resource named clientA_mksysb and will use that to create a NIM SPOT resource called clientA_spot.

nim -o define -t spot -a server=master -a source=clientA_mksysb -a location=/export/nim/spot -a auto_expand=yes -a comments='5300-05 Created from clientA_mksysb' clientA_spot

-or-# smitty nim_mkres Next you select "SPOT" as the resource type.

* Resource Name	[clientA spot]
* Resource Type	spot
* Server of Resource	[master]
* Source of Install Images	[clientA mksysb]
* Location of Resource	[/export/nim/spot/]
Expand file systems if space needed?	yes
Comments	[Created from clientA_mksysb]

This SPOT is only good for using in conjunction with this mksysb. Do not attempt to use this SPOT resource with any other lpp_source or mksysb image, as it can have unpredictable and even failure results. You also can not update this SPOT with any fixes, service packs, or TL updates.

The mksysb resource

NIM uses mksysb images that are taken to file. A NIM mksysb resource can either be defined from an existing mksysb file, or the NIM master can create a new mksysb image of one of his own clients. We'll look at both processes below. Before doing that we'll want to create a separate filesystem to hold these images. Following suit with our Ipp source and SPOT filesystems, we'll call this one /export/nim/mksysb, and create it the same way we created our lpp source and SPOT filesystems.

crfs -v jfs2 -g nimvg -m /export/nim/mksysb -a size=3G -or-# smitty crfs

Mount the filesystem up and we're ready to use it. **NOTE**

I daw of your mksysb files are going to be greater than 2gig in size, you will want to make sure that the filesystem you create on your NIM master is a "Large File Enabled" filesystem. JFS2 filesystems are by default set with this parameter, however if you are creating ifs filesystems, you will want to take note of the appropriate choices when creating the filesystem using smitty or add the "-a bf=true" attribute in your command line. You will also want to make sure your master's root user and the client's root user both have the authority to create large files To check this you can run the following command

ulimit -a Time(seconds) File(blocks) unlimited 2097151
131072 Data (kbytes) Stack(kbytes) Memory(kbytes) 32768 32768 2097151 Coredump (blocks) Nofiles (descriptors) 2000

The "File(blocks)" entry is what you're looking for. By default this is set to 1G. To change this you'll want to run the following command :

chuser fsize=-1 root

Changing the "fsize = 2097151" to "fsize = -1" will allow for unlimited file sizes. You will need to log out and log back in for this to take effect.

Creating a mksysb resource from an existing mksysb file : Depending on how you prefer to make mksysb images, you might wish to create mksysb images locally and fip them to your NIM master. Using a NIM client "ClientA" as an example I will log into that NIM client and run the following command into a filesystem that can hold the file.

mksysb -i /myfs/ClientA mksysb

You'll then ftp this file over to your NIM master under our generated filesystem /export/nim/mksysb. Once there we can execute our NIM commands to define it as a resource.

From command line

nim -o define -t mksysb -a server=master -a location=/export/nim/mksysb/ClientA_mksysb -a comments="Mksysb of ClientA" ClientA_mksysb

Notice that the file name and the resource name are the same. That is fine, and helpful because we know exactly what it is just by the name alone.

From SMIT :

smitty nim_mkres

smitty nim
=>Perform NIM Administration Tasks => Manage Resources => Define a Resource

Next, select "mksysb" as the resource type. (There are more options listed that we'll cover later)

* Resource Name [ClientA_mksysb] * Resource Type * Server of Resource mksysb [master] * Location of Resource [/export/nim/mksysb/ClientA_mksysb] Comments [Mksysb of ClientA] # lsnim -1 ClientA_mksysb ClientA_mksysb: Class = resources Type Arch Rstate = mksysb = power = ready for use Prev_state Location = ready for use = /export/mksysb/ClientA_mksysb Version = 5

Mod Oslevel r = 5300-05 = 0 Alloc_count Server = master

Using your nim master to create a mksysb resource of an existing client :

Your NIM master can also create mksysb images of his clients. In order to do this the client machine must have the bos.sysmgt.nim.client fileset installed, and must have an existing /etc/niminfo file. (This is covered in the previous "Defining Nim Clients" section). For our purposes, we are using rsh as our communication protocol. You also have the option of using 'nimsh' as a communication protocol, however for this guide, the NIM master has rsh permission to the client

From command line :

Release

nim -o define -t mksysb -a mk image=yes -a mksysb flags="-i" -a source=ClientA -a location=/export/nim/mksysb/ClientA mksysb -a server=master ClientA mksysb

Since the mksysb image hasn't already been created we need to specify more "-a <a tribute>" flags than we did in the previous example.

From SMIT :

smitty nim_mkres

smitty nim
=>Perform NIM Administration Tasks => Manage Resources => Define a Resource

Next, select "mksysb" as the resource type.

* * * *	Resource Name Resource Type Server of Resource Location of Resource Comments	[ClientA_mksysb mksysb [maste [/export/nim/m [Mksysb	b] r] ksysb/ClientA_mksysb] b of ClientA]
	Source for Replication -OR-	[]	
	System Backup Image Creation Options: CREATE system backup image? NIM CLIENT to backup PREVIEW only?	yes	[ClientA] no
	IGNORE space requirements?	no	
	EXPAND /tmp if needed?		no
	Create MAP files?		no
	Backup extended attributes?	yes	
	Number of BLOCKS to write in a sing: (leave blank to use system default)	le output	[]
	Use local EXCLUDE file?		no
	(specify no to include all files in -OR-	n backup)	
	EXCLUDE_FILES resource	[]	

As you can see again since we are not only defining the resource, but creating the mksysb image as well, there are more options to consider. Once it is complete you will have a mksysb resource that you can view using the 'lsnim -l' command

<pre># lsnim -1 Clien ClientA_mksysb:</pre>	ntA_mksysb
Class	= resources
Type	= mksysb
Arch	= power
Rstate	= ready for use
Prev state	= ready for use
Location	= /export/mksysb/ClientA mksysb
Version	= 5
Release	= 3
Mod	= 0
Oslevel r	= 5300-05
Alloc count	= 0
Server	= master

The bosinst data resource

Outside of NIM you can find a bosinst data file in the root (/) directory of most systems. If there is not one in that location you can find one in /var/adm/ras. The purpose of the bosinst data file is generally to run "non-prompted" installations. When you boot from the AIX Installation media you are presented with a series of choices. Every choice that you make affects the outcome and configuration of your installation (i.e. Disks in rooty), language mvironments, desktop, additional packages installed...). There might be a case where you have to install a system across the hall, in a different building, or across the country. If no one is on the other side making these choices, then you NN client will patiently is system. Console" prompt for all entry. Excluding the comments, a bosinst data file will look something like this :

control_flow: CONSOLE = Default INSTALL_METHOD = overwrite PROMET = yes EXISTING SYSTEM OVERWRITE = yes INSTALL X_IF ADAPTER = yes RUN_STARTUP = yes MM_INST_ROOTS = no NUM SIARUDF Yees NM INST KOUTS = no ERROR EXIT = UUSTOWLIAATION_FILE = TCB = no INSTALL_TYPE = BUNDLES = SWITCH TO_FRODUCT_TAPE = NECOVER DEVICES = Default BOSINST_DEBUG = no ACCEPT_LICENSES = DESKTOP = CDE INSTALL_DEVICES_AND_UPDATES = yes ENABLE 64BIT KERNEL = yes CREATE_UTS2_FS = yes ALL_DEVICES_KENNELS = yes GRAPHICS_KENNELS = yes MOZILLA_BUNDLE = no KERBERG5_BUNDLE = no MOZILLA BUNDLE = no KERBERGS 5 BUNDLE = no SERVER BÜNDLE = no ALT DISK INSTALL BUNDLE = no REMOVE JÄVA 118 = no HARDWARE DUMP = yes ADD CDE = no ADD COME = no ADD_KDE = no ERASE ITERATIONS = 0 ERASE PATTERNS = locale: BOSINST LANG = en_US CULTURAL_CONVENTION = en_US MESSAGES = en_US KEYBOARD = en_US

HDISKNAME = hdisk0

You will have 1 "target_disk_data" stanza for every disk that will be part of the rootvg. Non root volume groups will not have "target_disk_data" stanzas.

For further detailed information on the rest of the options you can visit this link : http://publib.boulder.ibm.com/infocenter/pseries/v5r3/index.jsp?topic=/com.ibm.aix.install/doc/insgdrf/bosinst.data_file_stanza_desc.htm

Notable information concerning a few bosinst data resource options:

- 1. Minimally, if you wanted to do a non-prompted installation you would need to change the "PROMPT = yes" to "PROMPT = no".
- Recover Devices can have 3 different values that are important when installing a mk/syb image. The 'te' and 'spot copy' installations should always have this set to "Default".
 yes This will attempt to bring back certain system attributes mainly tepip configuration and aio settings.
- no This will not import in from the mksysb any of the hostname/tcpip/aio settings.
- 5. Default This will not window may be a produced with the settings of the installing restored back to the same system it was taken from, otherwise, it will not. 5. Default This will only bring back the settings if being restored back to the same system it was taken from, otherwise, it will not. 6. Install devices and updates run an update all operation after the install is complete. For example if you have a \$300-05 lpp source and SPOT, but are installing a \$300-04 mksysb image, after the restore the system will run an update all operation against the lpp source, in this case updating the system to \$300-05 lpp source and SPOT, but are installing a \$300-04 mksysb image, after the restore the system will run an update all operation against the lpp source, in this case updating the system to \$300-05 lpp source and SPOT, but are installing a \$300-04 mksysb image, after the restore the system will run an update all operation against the lpp source, in this case updating the system to \$300-05 lpp source and SPOT, but are installing a \$300-04 mksysb image, after the restore the system will run an update all operation against the lpp source, in this case updating the system to \$300-05 lpp source and SPOT, but are installing a \$300-04 mksysb image, after the restore the system will run an update all operation against the lpp source, in this case updating the system to \$300-05 lpp source and SPOT, but are installing a \$300-04 mksysb image, after the restore the system will run an update all operation against the lpp source, in this case updating the system to \$300-05 lpp source and SPOT.
- Create JFS2 fs At the time of writing this document there is no supported for transported by ava to change a if filesystems.
 The target disk data share a cost of the value of the time of the value o

Now that you are familiar with what a bosinst.data file does, we will create one. If you are looking to have a bosinst data file to use for general purpose non-prompted overwrite installations, you can simply use the one from your NIM master. Following our previous naming we'll create a location to hold all of our bosinst data files that we define as resources. We will not however be creating a new filesystem to hold these as they are simply very small text files, so my / (root) filesystem should be able to handle the space.

On the NIM master from /

mkdir /export/nim/bosinst_data
cp /bosinst.data /export/nim/bosinst_data/bosinst.noprompt_ow

I've made a conv of my bosinst data file and labeled it so that I can recognize it as a nonprompted overwrite bosinst data file. Now we'll edit it to reflect what a general numose nonprompted overwrite would use

control_flow:

CONSOLE = Default INSTALL_METHOD = overwrite PROMPT = no PROMPT = no EXISTING SYSTEM_OVERWRITE = yes INSTALL X IF ADAPTER = yes RUN_STARTUP = yes RM_INST_ROOTS = no ERROR EXIT = CUSTOMIZATION_FILE = TCB = no INSTALL_TYPE = BUNDLES = SWITCH TO PRODUCT TAPE = RECOVER_DEVICES = Default BOSINST DEBUG = no ACCEPT LICENSES = DESKTOP = CDE INSTALL_DEVICES_AND_UPDATES = yes IMPORT_USER_VGS = ENABLE_64BIT_KERNEL = yes CREATE_JFS2_FS = yes ALL_DEVICES_KERNELS = yes GRAPHICS_BUNDLE = yes MOZILLA BUNDLE = no KERBEROS 5 BUNDLE = no SERVER BUNDLE = no ALT DISK INSTALL BUNDLE = nc REMOVE_JAVA_118 = no HARDWARE_DUMP = yes ADD_CDE = no ADD_GNOME = no ADD KDE = no ERASE ITERATIONS = 0 ERASE PATTERNS = locale: BOSINST LANG = en US CULTURAL CONVENTION = en US MESSAGES = en_US KEYBOARD = en_US target_disk_data: PVID = PHYSICAL_LOCATION = CONNECTION = LOCATION = SIZE_MB = HDISKNAME = hdisk0

Basically all I did in this case was switch the "prompt" value and blanked out the identifying "target disk data" stanzas to remove any specific reference except for the disk I want to install to. If I wanted to have the install nu to 2 disks, I would simply make a second "target disk data" stanza and add "hdisk I" under that hdiskname field. With an overwrite, migration, or preservation install you can not "pre-setup" mirroring. Having 2 target disk data stanzas in this resource will spread the rootyg over two disks.

Another scenario you might encounter, is a case where you have a mksysb image that you would like to either install back to the elient it was taken from, or clone that image over to new clients. In a case where you are using a mksysb image, there is a bosinst data file already built into that image. Allocating a bosinst data resource during an install will trump the bosinst data file that is built into the mksysb image.

Also, what if you have a mksysb image fast was readed with the "promption" already set and you don't want the install to be non-prompted. You can extract the bosinst data file from the mksysb image, edit it, and create a new NIM bosinst data resource from that extracted bosinst data file. Though we haven't covered mksysb resources yet, that really won't be important for what we're looking at here. To extract the bosinst data file we first need to find out where the mksysh file is located. This should already be defined as a NIM resource. For this example we'll call the mksysh resource : mksysh To find the location we use the 'Isnim -I' command, which you should be familiar with.

lsnim -l mksysbl mksysbl: Class Type = resources = mksysb

Arch Rstate = power = ready for use Prev state = ready for use Location Version = 5 = /export/mksysb/mksysb1 Release = 3 Mod = 5300-05 = 0 Oslevel r Alloc_count = master Server

The mksysb file is export/mksysb/mksysb1. We just need to run a restore command to extract it.

cd /export/mksvsb

restore -xqvf mksysbl ./bosinst.data

New volume on mksysbl: Cluster size is 51200 bytes (100 blocks). The volume number is 1. The volume number is 1. The backup date is: Thu Aug 18 09:13:54 CDT 2006 Files are backed up by name. The user is root. x 1139 ./bosinst.data The total size is 1139 bytes. The number of restored files is 1.

Now, we have /export/mksysb/bosinst.data. We treat this as any other by moving it into our /export/ninv/bosinst data directory, edit it, and define it as a resource.

Take note that the file name itself does not have to be "bosinst.data". If that were the case then you could only have I bosinst.data file in any one given directory location. The system doesn't care what the filename is so feel free to give it a descriptive name. Defining the bosinst data resource

From command line : Using the file /export/nim/bosinst data/bosinst.noprompt ow :

nim -o define -t bosinst_data -a location=/export/nim/bosinst_data/bosinst.noprompt_ow -a server=master -a comments="Non-prompted overwrite bosinst.data" bi noprompt_ow

From SMIT :

smitty nim_mkres

= smitty nim => Perform NIM Administration Tasks => Manage Resources => Define a Resource

Next, we'll select "bosinst_data" as the resource type

*	Posourco Namo	(bi poprompt ov)
	Nesource Name	[pr_noprompc_ow]
*	Resource Type	bosinst_data
*	Server of Resource	[master]
*	Location of Resource	[/export/nim_bosinst_data/bosinst.noprompt_ow]
	Comments	[Non-prompted overwrite bosinst.data]

Nim resources can not use certain special characters in their names. A period is one of them, so most people use underscore characters instead.

# lsnim -1 bi noprompt	OW	
bi_noprompt_ow:		
Class	=	resources
Type	=	bosinst data
Comments	=	Non-prompted overwrite bosinst.data
Rstate	=	ready for use
Prev state	=	unavailable for use
Location	=	/export/nim/bosinst data/bosinst.noprompt ow
Alloc count	=	0
Server	=	master

It is now ready for use with any of your installs

The image data resource

Outside of NIM you can find an image data file in the root (/) directory of most systems. If there is not one in that location you can make one using the 'mkszfile' command. This file contains information concerning the structure of your rootyg, the sizes of logical volumes, their corresponding mountpoint names (filesystem names), and other important information. This information can be edited to change the configuration of a system. At this time we will only be using this for altering mksysb installations. In this guide we will not be going into more advanced functions like pre-setting your own filesystem sizes, or presetting a system to be mirrored. Once you become familiar with editing this file and familiarize yourself with the bosinst data file - you can pretty much figure out how to do that on your own. Specifics might be given in a later more advanced guide.....let's just get through the basics first.

For simplicity, we'll break the image.data file down into 4 sections. (I've removed any commented sections).

Rootvg Info :

image_data: IMAGE_TYPE= bff DATE_TIME= Tue Apr 24 14:05:05 CDT 2007 UNAME_INFO= AIX shadoebso 3 5 000048ED4C00 UNAME_INFO= AIX shado PRODUCT TAPE= no USERVG_LIST= nimvg PLATFORM= chrp OSLEVEL = 5.3.0.50 OSLEVEL R= 5.300-05 CPU ID= 000048ED4C00 LPAR_ID= logical_volume_policy: SHRINK= no EXACT_FIT= no ils_data: LANG= en_US

vg_data: VGNAME= rootvg ------ 64 PPSIZE= 64 VARYON= no VG_SOURCE_DISK_LIST= hdisk1 hdisk0 QUORUM= 2 ENH_CONC_CAPABLE= no CONC_AUTO= no BIGVG= no TFACTOR= 1

As you can see there's all sort of system information and rootyg information listed here. We can see the hostname, user volume groups, os and ml info, and disk information - all can be useful for later editing of the file, and for future possible troubleshooting

Source disk data :

source disk data: PVID= 000048ed24f90748 PHYSICAL LOCATION= U0.1-P2/Z1-A9 CONNECTION= scsi0//9,0 LOCATION= 1S-08-00-9,0 SIZE_MB= 34715 HDISKNAME= hdisk1

PHYSICAL LOCATION= U0.1-P2/Z1-A8 CONNECTION= scsi0//8.0 LOCATION= 15-08-00-8,0 STZE MB= 34715 HDISKNAME= hdisk0

Similar to a /bosinst.data file, the /image.data file has information on what disks the rootvg currently owns. Remember, the /bosinst.data file contains information on how the rootvg was originally setup, the /image.data is the current setup. It is very important that this file be kept up to date when creating a mksysb.

Miszfile : I want to break here for just a second because this command is very important. If you create your mksysb backups in smit, the default option is already set to run this command so you don't need to change anything. When running a mksysb from command line you use the 'ii' flag to make sure the /image.data file gets updated. Alternately you can execute it manually

mkszfile

The reason this is so important is this.

Lets say you have your original system build with your standard filesystems. You create a set of your own filesystems and throw some data in there. You then take a mksysb and do not have the /image data file updated. The image data file, being responsible for rebuilding the system structure during mksysb restore, has no knowledge of the added filesystems. What will happen is all of that extra data will be put into your / (root) filesystem. It will likely fill up to 100%, and your mksysb restore will fail.

There can be some cases where you do not have the image data file updated intentionally, usually because you've edited it manually yourself for a specific reason, and having the 'mkszfile' executed will remove your changes. Be very careful about editing this file, as any simple character mistake can cause the restore to fail.

Lv_data :

MAX_LPS= 512 COPIES= 2 LPs= 1 STALE PPs= 0 INTER POLICY= minimum INTRA_POLICY= edge MOUNT POINT= MIRROR WRITE CONSISTENCY= on/ACTIVE MIRROR_WRITE_CONSISTENC LV_SEPARATE_PV= yes PERMISSION= read/write LV_STATE= closed/syncd WRITE VERIFY= off PP_SIZE= 64 SCHED_POLICY= parallel PP= 2 BB POLICY= relocatable RELOCATABLE= no UPPER BOUND= 32 LABEL= primary_bootlv MAPFILE= LV MIN LPS= 1 STRIPE WIDTH= STRIPE SIZE= SERIALIZE_IO= no FS_TAG= DEV_SUBTYP=

Every logical volume on the system will have an lv_data starza; the first always being the starza for your hd5 - the boot logical volume. This is where, in general, most of the editing of the file is done. The main reason (and only reason we'll cover here) to edit this starza is to manually break mirroring. The situation would be where you have a mirrored mksysb in this manner. To accomplish this you need to pull the image data file from your mksysb file (similar to how we pulled the bosinst data file from the mksysb) and edit it to manually break the mirrors. If this is a case where the system you took the mksysb from is up and running and you're using the image to clone to another system, do NOT just go over to that system and cp the image data file over. Always use the image data file from the mksysb.

Fs_data

fs data:
FS NAME= /
FS_SIZE= 393216
FS_MIN_SIZE= 63156
FS_LV=/dev/hd4
FS_JFS2_BS= 4096
FS_JFS2_SPARSE= yes
FS JFS2 INLINELOG= no
FS_JFS2_SIZEINLINELOG= 0
FS_JFS2_EAFORMAT= v1
FS_JFS2_QUOTA= no
FS_JFS2_DMAPI= no
FS_JFS2_VIX= no

This section contains information about the filesystems. When editing the image.data file, ignore this section. For our purposes, it's just there to look pretty. In a case where you need to edit the image data file in an existing NIM mksysb resource, we first pull the //image data from the mksysb resource. Using our example from the bosinst data

lsnim -l mksysbl mksysbl: Class = resources Type Arch = mksysb = power Rstate = ready for use Prev_state Location = ready for use = ready for use = /export/mksysb/mksysb1 Version = 5 Release = 3 Mod = 0 Oslevel_r Alloc count = 5300-05 = 0 Server = master

The mksysb file is export/mksysb/mksysb1. We just need to run a restore command to extract it.

cd /export/mksysb
restore -xqvf mksysb1 ./image.data New volume on mksysbl: Cluster size is 51200 bytes (100 blocks). The volume number is 1.

The backup date is: Thu Aug 18 09:13:54 CDT 2006 Files are backed up by name. The user is root. A 940 /image.data The total size is 9430 bytes. The number of restored files is 1. Now, we have /export/mksysb/image.data. We treat this as any other by moving it into our /export/nim/image_data directory, edit it, and define it as a resource.

Defining the image_data resource

From command line :

nim -o define -t image_data -a server=master -a location=/export/nim/image_data/image.data -a comments="Edited image.data file for mksysbl" image_data_mksysbl

From SMIT :

smitty nim_mkres
-or# smitty nim
-> Perform NIM Administration Tasks => Manage Resources => Define a Resource

Next, we'll select "image_data" as the resource type.

* Resource Name		[image_data_mksysb1]
 Resource Type 		image_data
* Server of Resource		[master]
* Location of Resource		[/export/nim/image_data/image.data]
Comments		[Edited image.data file for mksysb1]
<pre># lsnim -1 image_data_m</pre>	ksj	/sbl
image_data_mksysb1:		
Class	=	resources
Type	=	image_data
Comments	=	Edited image.data file for mksysb1
Rstate	=	ready for use
Prev state	=	unavailable for use
Location	=	/export/nim/image data/image.data
Alloc count	=	

You can choose to edit your file either before or after you define it as a resource. NIM does not care that you change the contents of the file, as long as the file is valid. Since image data files change according to the system they are taken from, it is a good idea to remove any image data files you are not actively using. You only want to use your edited image data file in conjunction with the mksysb it was intended for.

Breaking mirroring in an existing mksysb's image.data file :

= master

Looking at our lv_data stanza :

lv_data:

Server

VOLUME GROUP= rootvg IV SOURCE DISK_LIST= hdisk0 hdisk1 IV JOENTFIER= 00004sed00004c00000101224adbe0a.1 LOGICAL_VOLUME= hd5 VG_STAT= active/complete TYPP= boot OVETS= 2 LFP= 1 IFF= 7 INTER_FOLICY= minum INTER_FOLICY= edge MOUNT_FOINT= MIRROR_WRITE_CONSISTENCY= on/ACTIVE LV_SPRARTE_FV= yes PERMISSIONF= read/write LV_STATE= closed/syncd WRITE_VERTY= off PPS_ISIE= 64 SCHED_FOLICY= parallel PP= 2 BB_POLICY= relocatable REDCATABLE= no UPPER_BOULCY= closed/second WRITE_VERTY= off PFFE_SIE= 64 STRIEE_UINE= 32 LABEL= primary_booltv MAPFILE= IV MIN_LES= 1 STRIEE_MIDTH= STRIEE_SIE_0= no FS_TAGE BE_SUBJECFFE

Note the two entries in bold. This is the lv data stanza for our boot logical volume hd5. In order to break mirroring we need to change those two bold entries.

COPIES= 2 to COPIES= 1 PP= 2 to PP= 1

For every lv_data stanza in this file you will switch the number of copies to 1. You'll then change the "PP=##" in every stanza to half of the current value. If you don't feel like doing the math, you can also just look under the "COPIES=#" and see the "Lps=##". This is what the "PP=##" should be after cutting it in half. ALL lv_data stanzas need to be edited in this manner. Once this is done, saving the file will give you a non-mirrored rootvg after your NIM restore completes.

Not-So-Commonly-Used Resources

The next series of resources I'll only briefly describe. Since this is more of a "getting started" guide you won't need to use any of these. By the time you're comfortable with NIM (hopefully after going through this guide), you should be able to come back and create, define, and work with these resources without too much trouble.

Machine Group

A machine group is exactly what it sounds like. Several machines can be defined into a "machine group" resource for convenience in installation. What you get in convenience you can pay for in performance however. Putting 20 machines in a machine group and running an installation to that machine group resource will obviously not be as fast as installing to 5 machines at once. This not only depends on your master's performance capabilities, but also your network's performance capabilities.

You may run into a case where you need 5 machines installed with a "gold image" mksysb. In a case like this, defining a machine group resource could save you some time.

Resolv_conf

This resource will look exactly like your /etc/resolv conf file. It is simply a file containing nameserver and domain name information. Using this resource will, upon a successful bosinstall operation and reboot, configure that machine to use those services defined in the file.

Script

This is a user written shell script that can be allocated and executed after either a "cust" or bos_inst operation. This sort of resource is unique in that you can allocate multiple script resources to be executed on a client after an installation. The only downside however is that the order in which those scripts are executed is not a configurable

option ... typically it ends up random. Note: The script resources must not point to files that reside in the /export/nim/scripts directory. This directory is used for the nim_script resource that is managed by NIM. NFS restrictions prevent defining multiple resources in the same location. Use your own location for holding your scripts, such as /export/nim/myscripts.

FB_scrip

A fb script resource represents a file that is used to configure devices when a NIM client is booting for the first time after the BOS installation process is completed. During BOS installation, certain customization operations (such as device configuration) cannot be performed because they require certain daemons to be running. However, at this point in the BOS installation process, daemons are not available. As a result, certain devices may not be configured during system reboot, and have to be manually configured after the system has booted.

Exclude_files

This is a file with the names/locations of files/directories that you wish to exclude from a mksysb image. Do not confuse this with the target system's own local /etc/exclude file resource. This resource would be useful in cases where you are backing up multiple NIM clients and always want to use the same sort of exclusion for each of them. Things to note with using exclude files : 1. Make sure all entries start with a "\scale" of them in the start of the start from / and look for your path.

^./myfiles/ ^./mytrash/

^./mytrash/

2. Do not use wildcards. They tend to exclude everything on the system.

3. Excluding files does NOT mean that you are excluding a filesystem. If you have a 200gig filesystem called /backups and you add that to your exclude list : ^/backups

All you've done is exclude all of the data in that filesystem. If you restore that mksysb, the /backups filesystem will still be recreated at 200gig, but it will be empty. The best way to exclude a filesystem from a mksysb backup and have it not show up upon restore, will be to unmount the filesystem before running your mksysb. Alternatively you can put your filesystem entry in the /etc/exclude.roory and edit the image data and remove the entries for the ba and for but of ERRY careful. You can easily corrupt this file.

4. Be very careful with what you put in there. Do not either intentionally or unintentionally exclude files that will prevent the system from restoring successfully. If you have :

^./usr/sbin

... in your exclude file, you're not going to be able to restore that backup.

Installp_bundle

This allows you to install additional filesets to a NIM client during a bosinst operation. If you want all of your installed clients to have a specific set of filesets, you may want to create and allocate an installp bundle that will be added to the default set of filesets installed during an overwrite installed clients to have a specific set of filesets, you may want to create and allocate an install bundle that will be added to the default set of filesets installed during an overwrite installed clients to have a specific set of filesets, you may want to create and allocate an install bundle that will be added to the default set of filesets installed during an overwrite installation (just as an example).

Removing NIM resources

The last thing we need to know about NIM resources, is how to remove them. The command is quite easy, and the only thing you need to verify first is that it is not allocated to any clients. You can check any resource's "Alloc_count" by running an 'knim-l' against that resource name.

From command line :

nim -o remove

From SMIT :

f smitty nim_rmres -orf smitty nim => Perform NIM Administration Tasks => Manage Resources => Remove a Resource

Define NIM Clients

Your NIM clients are defined to the master in one of two ways. The master can define clients to itself or a machine can tell a master that he is defining himself as a client. You can also disable the feature of allowing clients to define themselves to the NIM environment (by default this is turned on).

Since this is a NIM operation we will be using the 'nim' command to define clients. There is a new way of defining and installing multiple clients at once using the 'nim_clients_setup' command, but since this is an introduction/beginning guide, we will not be covering that here.

When a NIM master runs an operation to define a NIM client it does not actually go out and contact the client or provide any sort of information to the client letting it know that it is being defined. This is a purely informational operation that updates NIM. The only requirement you need is for the master to be correctly able to resolve the client's hostmane.

From command line :

nim -o define -t standalone -a platform=chrp -a if1="find_net lucidbso 0" -a netboot_kernel=mp -a connect=shell

Breaking down the command # nim -o define -t standalone : This is the NIM operation of defining an object of type=standalone

... -a platform=chrp : The platform type of the target system. After AIX 5.2 this will always be chrp.

...-a [f]="find_net hucidhso 0": Used when a client is part of an existing NIM network. In this case my NIM client belongs to my master's NIM network (i.e. They're on the same subnet) so I don't need to give it further information. If this client needed to be on a new network then we would not use the "find_net" but rather the "net_definition= <value>....." options where you'd need to specify "networktype" "subnetmask" "clientgateway" "networkname" attributes.

... -a netboot_kernel=mp : This should always be set to mp for a multiprocessor and in the future they will probably have an mp64 option.

... -a connect=shell : This will be the connection type used. You can either choose shell (rsh) or nimsh

... <cli>clientname> : The clients resolvable hostname.

From SMIT :

smitty nim_mkmac

From here you are asked what the hostname of the NIM client is. If the master can resolve the client's hostname and he already has a NIM network associated with the client's network then it will "pre-generate" a final acceptance screen for you (see 1 below). If the master does not already have a NIM network defined for this client, then you will be prompted for more information and be asked to create a new network for this new client (see 2 on the next page).

* NIM Machine Name * Machine Type * Machine Type Difference of the State of the State Communication Protocol used by client Primary Network Install Interface	[clientname] [standalone] [chrp] [mp] []
* Cable Type	bnc
Network Speed Setting Network Duplex Setting	
* NIM Network	master_net
* Host Name	client_hostname
Network Adapter Hardware Address	[0]
Network Adapter Logical Device Name	[]
IPL ROM Emulation Device	[]
CPU Id	[]
Machine Group	[]
Comments	[]

Notice that you actually don't have to fill in anything else as a required field. The master can resolve the client's hostname, and he has put the client on the same network (master_net) because in this case, the client and master are on the same network. I recommend leaving the optional fields blank as they currently are (especially if your NIM client is 5.2 or below, as some options are not valid for 5.2 clients). Pressing=enter-from here will define the client.

-or-	
* NIM Machine Name * Machine Type	[clientname] [standalone]
* Hardware Platform Type	[chrp]
Kernel to use for Network Boot	[mp]
Communication Protocol used by client	[]
Primary Network Install Interface	
* Cable Type	bnc
Network Speed Setting	[]
Network Duplex Setting	[]
* NIM Network	[10 14 20 Net]
* Network Type	ent
* Ethernet Type	Standard
* Subnetmask	[255.255.254.0]
* Default Gateway Used by Machine	[10.14.20.1]
 Default Gateway Used by Master 	[9.3.58.1]
* Host Name	clientname
Network Adapter Hardware Address	[0]
Network Adapter Logical Device Name	[]
IPL ROM Emulation Device	[]
CPU Id	[]
Machine Group	[]
Comments	

Notice that there is much more to fill out here, because we're defining a new network within NIM. We'll say my new NIM client's ip = 10.14.20.34. I'm naming my NIM network 10_14_20_Net so that it is descriptive just by looking at the name. Also, any other client on this same network will now be auto-defined on this new network sign of the name of the n

Using 'niminit' from the client

Installing the required fileset :

Alternatively we can define a new client to the NIM environment from the client side as well. First of all you need to make sure that the NIM client fileset (bos.sysmgt.nim.client) is installed to the client system. The client fileset should be installed now on all systems by default. Verify this by running the following command :

lsnim -1 bos.sysmgt.nim.client

If the fileset is not installed proceed to the next step(s). If it is installed proceed to the "Using the NIM client to define itself to the master" section.

From command line :

Put V1 of the base AIX installation media in the drive on the client and run the following :

installp -acgXd /dev/cd0 bos.sysmgt.nim.client

From SMIT :

<pre># smitty install_all</pre>		
* INPUT device / directory for software * SOFTWARE to install	/dev/d	:d0
PREVIEW only? (install operation will NOT occur)		no
COMMIT software updates?		yes
SAVE replaced files?		no
AUTOMATICALLY install requisite software?	yes	
EXTEND file systems if space needed?	yes	
OVERWRITE same or newer versions?	no	
VERIFY install and check file sizes?		no
DETAILED output?		no
Process multiple volumes?		yes
ACCEPT new license agreements?	no	
Preview new LICENSE agreements?	no	

*do not install any of the other 2 NIM filesets (bos.sysmgt.nim.master / bos.sysmgt.nim.spot) to a client. The client will then presume it is intended to be a NIM master and not allow any client functions to be ran against it.

Using the NIM client to define itself to the master

For this example the client name will be lucidoso. The NIM master's name will be shadoebso. In both cases we will be defining the client from the client side. Since hostname resolution is very important in NIM, it is a good idea to make sure your /etc/hosts file has correct information concerning the NIM master.

From command line :

niminit -a name=lucidbso -a master=shadoebso -a pif_name=en0 -a platform=chrp -a netboot_kernel=mp

To check this was successful we can run the following command on the client :

nimclient -1 -1 lucidbso

lucidbso: Class = machines Type Connect = standalone = shell = chrp Platform Netboot kernel = mp If1 = master net lucidbso.austin.ibm.com 006094E93502 ent0 Cable_type1 = N/A = ready for a NIM operation Cstate Prev_state Mstate = ready for a NIM operation = currently running = 000890164C00 Cpuid

We will get the exact same output if we are on the NIM master and run the following command :

lsnim -l lucidbso

From SMIT :

smitty niminit

smitty nim ==> Configure Network Installation Management Client Fileset

* Machine Name [lucidbso] * Primary Network Install Interface [en0] * Bost Name of Network Install Master [shadoebso] Hardware Platform Type chrp Kernel to use for Network Boot [mp] Communication Protocol used by client [] Ethernet Interface Options Network Speed Setting []

NIM Client Installations... How To Do Them Successfully

Finally we get to the good stuff....how to install your newly created clients using your newly created resources. This section is broken down into 3 subcategories

Installation Types

rte mksysb spot update all / single fileset install Installation Methods push force push pull

Installation Types

Installation Type : rte

This will be either a Migration, Preservation, or New and Complete Overwrite install.

Installation Type : mksysb

This will be taking a mksysb image and either restoring it back to the system it came from or cloning that image to another system. * A common problem when running a mksysb install is attempting to use a SPOT that is at a lower level than your mksysb image. NIM has a built in check now and will warn you if you are attempting to use a lower level SPOT, however it is a good idea to make it a habit to check this yourself.

Installation Type : SPOT

This is a very rarely used installation method. By doing this you take the SPOT that you are using for the installation, and copy it over. If you do not have the proper device support in your SPOT, the installation will complete, but the system will not boot. *I will not be reviewing SPOT installs as they are so rarely used, however after going through the next section, you should have no problem setting one up should you wish to do so.

Installation Type: update_all

The last installation type we'll cover is the update_all. This can be used to update a master, client. or SPOT with individual APARs, technology levels, or service packs. Most commonly you will use your lpp_source resource to run an update_all to a NIM client that is at a lower technology level. In this case you do not need a matching SPOT resource, as there is no initial boot required of the client. The master simply NFS mounts over the lpp_source location to the client which ends up running his own update. all optimate and the client area in the service pack.

*In all cases, it is <u>always recommended</u> to verify that your target system is up at the latest level of firmware is up to the latest level" situations. Trust me, this isn't one of those, "ch I hate updating firmware, I'll just skip it this time" sorts of situations. This is a "seriously....make sure your firmware is up to the latest level" situations. Below is the firmware download site firmware backing through to your firmware level. Executed Firmware Download is for the series of the

http://www-933.ibm.com/support/fixcentral/

If planning to run an update all to either your NIM master or a client machine you should refer to the DCF document <u>Updating to a New Technology Level or Service Pack</u> to go through recommended pre/post checks. You can also use the search function at the DCF site to run a search for the document by using the same name.

From command line :

nim -o cust -a lpp_source=5305_lpp -a accept_licenses=yes -a fixes=update_all ClientA

variation :

You don't have to necessarily run an update_all. You can also install individual filesets :

nim -o cust -a lpp_source=5305_lpp -a accept_licenses=yes -a filesets= ClientA

From SMIT :

smitty nim_update_all
-or-

> = smitty nim => Perform NIM Software Installation and Maintenance Tasks => Install and Update Software => Update Installed Software to Latest Level (Update All)

You'll next select your target client (or SPOT) and the lpp_source you're using for the update.

* Installation Target lucidbso * LPP_SOURCE 5305_lpp Software to Install update all

As you will see, there is no other option you need to set or change because they will all be filled in for you. If adding new filesets you may need to switch the option to accept licenses to "yes"

Installation Methods

Installation Method : Push

This method of installation is controlled by the NIM master. The client machine must have the bos.sysmgt.nim.client fileset installed and an /etc/niminfo file reflecting correct NIM master information. The NIM master will reset the bootlist to reflect the network adapter defined in NIM, allocate all appropriate resources, and initiate a system rebot. This installation method is commonly used when installing systems in a remote location using a bosinst (data resource to allow for non-prompted installations). Provided are two examples of running a publishing to a NIM client. To following the command line examples are their corresponding SMIT procedures on accomplishing the same tasks.

From command line : EXAMPLE I :

This command will initiate a non-prompted rte push install to ClientA. Depending on the current oslevel of ClientA, I can either run a migration install (if ClientA is running AIX 5.2 for example) or a Preservation (if ClientA is already running AIX 5.3) or a New and Complete Overwrite (regardless of the current level).

nim -o bos_inst -a source=rte -a lpp_source=5305_lpp -a spot=5305_spot -a accept_licenses=yes -a boot_client=yes -a bosinst_data=bi_noprompt_ow ClientA

From command line : EXAMPLE II:

This command will initiate a mksysb install to ClientA using its own mksysb image. Since this is a mksysb restore back to the exact same system it was taken from, I do not need to use an lpp_source resource. If I were to be cloning this mksysb to any other system... even the same system type, I would need to allocate an lpp_source resource.

resource.

nim -o bos_inst -a source=mksysb -a spot=5305_spot -a mksysb=ClientA_mksysb -a boot_client=yes ClientA

With this second command, we are not allocating the bi_noprompt_ow bosinst_data resource. Since this will be a prompted install, you'll need to have either yourself or someone else in front of the target system's console to go through the BOS Install Menus.

From SMIT : EXAMPLE I :

If you have decided to initiate a non-prompted rte push install to ClientA from smit you can run one of the following

smitty nim_bosinst

-or-# smitty nim

=> Perform NIM Software Installation and Maintenance Tasks => Install and Update Software => Install the Base Operating System on Standalone Clients

After selecting your target client and the install type of "tte" you'll be asked to select your lpg_source and SPOT resources. Make sure these match, as you do not want to select an AIX 5.2 lpg_source and 5.3 SPOT. As you'll see there are a lot of options in the following screen. I will group these options into 3 different sections. Section 1 is generally the only section you'll use. In some certain rare circumstances you may want to use the install plags for the addition of fixes, but it is recommended to leave those as they are for TL and ML updates. The final section on scheduling I've personally never seen anyone use, so it's there for you to play with but beyond that, we won't discuss it. In future SMIT options for installation methods I will only be showing section I output. The following SMIT entries will directly accomplish the same as the first command given earlier for the non-prompted NIM installation. As you can see -this is a lot easies to have a spelling mistake.

Section I - The main options

* Installation Target * Installation TYPE * SPOT LPP_SOURCE MKSYSB	ClientA rte 5305_spot [5305_lpp]
BOSINST DATA to use during installation IMAGE DATA to use during installation RESOLY CONF to use for network configuration Customization SCR pt to run ofter installation Customization SCR pt to run ofter installation ACCEPT rew license agreements? Remain NIM client after install? PRESERVE NIM definitions for resources on this target?	[bi_noprompt_ow] [] [] [] [] [] [yes] [yes] [yes]
FORCE PUSH the installation?	[no]
Initiate reboot and installation now?	[yes]
Set bootlist for installation at the next reboot?	[no]
Additional BUNDLES to install	[]
Additional FILESETS to install (bundles will be ignored)	0

Section II - installp Flags

These would be used if you had a series of fixes you were adding on top of the base code and you wanted to for example have them installed in the "APPLIED" versus "COMMITTED" state. It is not recommended to install large groups of fixes or technology levels in the "APPLIED" state as the reject operation is not intended to backlevel entire technology level updates.

Bottom line - you're best off not relying on that as a backout method. Use alt disk or multibos for that. Leave these as they are.

[yes] [no]

COMMIT software updates? SAVE replaced files?

AUTOMATICALLY install requisite software? EXTEND filesystems if space needed? OVERNRITE same or newer versions?	[yes] [yes] [no]	[20]
ACCEPT new license agreements?	[no]	[110]
Preview new LICENSE agreements?	[no]	

Section III - Scheduling

Not much I can say for this. I've never seen anyone use it. I would only recommend using it if you're positive your NIM setup is perfect because if you're counting on an install to be complete when you come in the next morning and all you see is a led 608 hang, you'll be pretty disappointed.

Group controls (only valid for group targets): Number of concurrent operations Time limit (hours)	[]	[]
Schedule a Job	[no]	
MONTH	[]	U
DAY (1-31) HOUR (0-23)		[] []
MINUTES (0-59)	[]	

From SMIT : EXAMPLE II: This final smit screen will correspond to what the second NIM command accomplished. This will restore the mksysb image ClientA mksysb back to ClientA.

smitty nim_bosinst

-or-# smitty nim

> Perform NIM Software Installation and Maintenance Tasks => Install and Update Software => Install the Base Operating System on Standalone Clients

After selecting your target client and the install type of "inksysb", you'll be asked only for the SPOT to use. Remember, if you're restoring back to the exact same system, an lpp source is not needed. If you're restoring to any other system, then you should also select an lpp source at the same level as the SPOT and mksysb resources.

* Installation Target * Installation TYPE * SPOT LPP SOURCE MKSTSB	5305_spc [] ClientA_	ClientA mksysb ot mksysb
BOSINST DATA to use during installation IMAGE DATA to use during installation RESOLV_COMP to use for network configuration Customization SCRIPT to run after installation Customization FB Script to run at first reboot ACCEPT new license agreements? Remain NIM client after install? PRESERVE NIM definitions for resources on this target ?	[] [] [] [yes] [yes] [no]	[yes]
Initiate reboot and installation now? -OR-		[yes]
Set bootlist for installation at the next reboot	: 2	[no]
Additional BUNDLES to install -OR-	[]	
Additional FILESETS to install (bundles will be ignored)	[]	

Installation Method : Force Push

This is similar to a push, as the master still initiates the bootlist change and reboots the client. In this case however, the client is not necessarily configured as a client of the NIM master....and does not have to have knowledge of the NIM environment. In order to accomplish this, you need to meet 2 requirements.

1. The NIM master must have 'rsh' permission to the client.

2. You need to have and allocate a bosinst data resource. It doesn't have to be for a non-prompted install or pose any sort of configuration usage for the install, but one has to be allocated.

From command line : The only difference between the push command we ran earlier and the force push is an additional attribute flag : -a force_push=yes

nim -o bos_inst -a source=rte -a lpp_source=5305_lpp -a spot=5305_spot -a force_push=yes -a accept_licenses=yes -a boot_client=yes -a bosinst_data=bi_noprompt_ow ClientA

The same will apply to the second example with the mksysb push

nim -o bos_inst -a source=mksysb -a spot=5305_spot -a mksysb=ClientA_mksysb -a boot_client=yes -a bosinst_data=bi_prompt_mksysb -a force_push=yes ClientA

*notice in the above command I had to add a new bosinst_data resource because a force push install requires that one be allocated, even if it is not going to be used. Any options you select in the BOS menus will override the options set in the allocated bosinst_data resource or the bosinst data file that is contained within the mksysb.

From SMIT :

Again, there is just one main difference here. You simply switch the following entry in your smit screen from "no" to "yes". Of course, we have to make sure we have a bosinst_data resource allocated.

BOSINST_DATA to use during installation [bi_prompt_mksysb] FORCE PUSH the installation? [yes]

Again, since this is just an attribute change, not a change in the methodology of the install. If you choose to allocate a non-prompted bosinst data then the install will proceed on its own using the configurations you selected in the file, otherwise you will have to be at the system console to provide the necessary selections.

Installation Method : Pull

Part 1 - Setting up the nim master This is the most common sort of NIM install that we see today. In this case, the NIM master will setup for the install, but not initiate it. All resources will be allocated - and the master will wait for a bootp request from the NIM client. In order to initiate this request, the NIM client must be booted to SMS (System Management Services). At the SMS memory you can entre the P address information, set the bootlist, and initiate the boot. This method is required for systems that are unable to boot into normal mode, or for those systems that have no operating system on them.

From command line: The setup command again does not change much from the push install. All we are doing is changing an attribute to the bosinst operation telling it not to reboot the NIM client, thus changing the install type to a pull install :-a boor client--yes to -a boor client--

nim -o bos_inst -a source=rte -a lpp_source=5305_lpp -a spot=5305_spot -a boot_client=no -a accept_licenses=yes -a bosinst_data=bi_noprompt_ow ClientA

The same will apply to the second example with the mksysb

nim -o bos inst -a source=mksysb -a spot=5305 spot -a mksysb=ClientA mksysb -a boot client=no ClientA

From SMIT : Again, there is just one main difference here. You simply switch the following entry in your smit screen from "yes" to "no"

Initiate reboot and installation now? [no]

In this case we are changing the methodology of the install even though it is just an attribute of the overall bosinst command that is altered.

Installation Method : Pull

Part II -The master is set up....now what ?

The NIM master is now ready and waiting for a bootp request from the client. In order to do this we need to boot the client machine into SMS (System Management Services). Depending on your machine type there are a few different ways to boot to SMS.

1. Using a graphical terminal, during system boot you'll see icons going across the bottom of the screen. Anytime after the "keyboard" icon and before the "speaker" icon you can press the F1 key to indicate that you wish to boot to SMS.

2. Using an ASCII terminal, during system boot you'll see words come across the bottom of the screen. Anytime after the word "keyboard" and before the word "speaker" you can press the 1 key to indicate you wish to boot to SMS. This will be the 1 key on the number jad.

3. If you have an HMC managed environment, you can simply boot your target system using the SMS profile.

If you are one of those whose terminal seems to not come up in time to be able to see the icors or words come across the screen, the LED display during the time you have to press the appropriate button is EIF1. Also, sometimes you'll notice on graphical systems it specifically asks for 1 instead of F1... it should display on the screen the correct button to press

Your firmware level can depend on what sort of ontions you see in SMS. I don't have access to all variations of the menu ontions so I'll just use the one my NIM master has. You should be able to navigate closely enough as the wording should be similar

SMS - SYSTEM MANAGEMENT SERVICES -

- 1. Select Language 2. Change Password Options
- View Error Log
 Setup Remote IPL (RIPL (Remote Initial Program Load))
 Change SCSI Settings
- Select Console
 Select Boot Options

First of all we need to provide the IP addresses necessary to tell the client who he is, and where to boot from.

4. Setup Remote IPL (RIPL (Remote Initial Program Load))

Next you'll have a selection of adapters to use. Select your adapter that corresponds to the adapter/host you defined in NIM. You will not see "ent0/ent1...etc" options. You will however see the hardware addresses and slots.

We then are brought to 3 options

1. TP Parameters If falameters
 Adapter Configuration
 Ping Test

Now we need to set our IP Parameters.

1. Client IP Address [###.###.###.###] 2. Server IP Address [###.###.###] 3. Gateway IP Address [###.###.###] 4. Subnet Mask [###.###.###.###]

Enter the correct addresses for each field. **VERY IMPORTANT**

If your NIM master and client are on the SAME subnet, then you will set the Gateway IP Address to be the NIM master's ip address......(usually). There were a few firmware levels that made you use 0.0.0.0 if the master and client were on the same network, but running into that is very rare. Use the NIM master's ip.

If you are unsure or need to verify if your master and client are on the same network you can always go back to your NIM master and check to see what NIM thinks. Of course, NIM is only correct if the information provided to it was correct originally

On the NIM master you'll want to compare the "if1=" lines on the master and client

lsnim -l master |grep if1
if1 = master_net shadoebso

#lsnim -1 ClientA |grep if1 if1 = master_net dipperbso

So we know the master and client are defined on the same subnet. If the client is defined on a different NIM network than the master, then use the client's gateway as the Gateway IP Address entry.

After setting the IP Addresses use 'M' to return to the main menu. You typically do not want to go into the "Adapter Parameters" (option 2 on the previous screen) to change the adapter parameters or disable spanning Tree. Spanning Tree goes out and wakes up parts of the network that might have been disabled since they're not in use. This can increase performance but also block bootp if it is not expecting to receive a request through that portion of the network

Also, with the Ping Test... the ping test is not a reliable way to determine if bootp is going to work. In fact, we use it the other way around. If bootp is failing for some reason we may come back and check the ping test to see if that is having a problem as well. Do not presume bootp will fail if the ping test fails. It may, but it is not a reliable indication

With our IP Parameters set we should now be back at the main menu

SMS - SYSTEM MANAGEMENT SERVICES -

- Select Language
 Change Password Options
- View Error Log
 Setup Remote IPL (RIPL (Remote Initial Program Load))
- 5. Change SCSI Settings 6. Select Console
- 7. Select Boot Options

Now we're ready to select our boot device

7 Select Boot Options

The next menu should come up

- 1. Select Install or Boot Device
- . Configure Boot Device Order 3. Multiboot Startup

You can take either option 1 which will make this a 1 time boot device selection, or option 2 which will permanently change the boot device order until either you or the system changes it back to your boot drive after the install is complete.

1. Select Install or Boot Device

Select Device Type :

- 1. Diskette 2. Tape 3. CD/DVD 4. IDE 5. Hard Drive
- 6. Network
 7. List all Devices

Trust me, make your life easier and select

7. List all Devices

The system will go out for you and scan itself to determine which devices are available to boot from. All of your available boot devices will be displayed here. The menu can be a little tricky here. If you have a device pre-selected it will have a 1 next to it under the "Current Position" column. Use the "Select Device Number" listing to choose the device you want to boot from.

The next screen will offer you three choices

Information
 Normal Mode Boot

3. Service Mode Boot

Select :

2. Normal Mode Boot

It shouldn't really matter if you select normal or service mode, I always select normal mode Finally it asks if you're sure you want to exit from SMS. Select 'yes' and let the boot go.

What you SHOULD see You'll likely see a brief splash screen then the bootp request attempt. Ideally you'll see something like :

R=0

BOOTP : S=1 R=1

Which indicates it sent and received a request successfully. If you start counting up like this :

BOOTP : S=7

...then you've got a bootp problem. We're not covering troubleshooting yet, so we'll presume bootp was successful.

Next the master will thip the boot image over so you should see a number rapidly increasing to roughly 24000-ish. Once that is complete the client will go through all of the necessary LED codes to establish proper communication and NFS mounts. After that you will be presented with the BOS menu screens (if running a prompted install),

Troubleshooting : When Things Go Wrong

Ok so let's be real. This is the part you really care about right. What happens when the perfect world of NIM that I've presented goes up in smoke. This section will cover the main problems that people come across during NIM installs, namely - the LED hangs. First of all let's look at a bootp issue

There are 7 LED hangs that are most common. We'll go through them one at a time, discuss what causes them, and I'll provide a brief set of checks/steps that you can run to help resolve those LED hangs on your own

Bootp This is the first thing that can go wrong. If you don't have bootp connectivity, then forget the rest of the install because you're not going anywhere. The most common causes of a bootp failure

Bootp failure : Forgetting about the NIM master

Trans much is despaped. Sometimes you're so into getting your system installed that you forget the most important thing....letting the master know you're running an install. When running a pull install don't forget to initiate the bosinst operation on the NIM master. Unless the master knows that a client will be sending a bootp request, he'll ignore it.

You can check by running an 'Isnim' listing on the master side against the target client. Make sure that the "Cstate" of the client reflects that you have initiated the bosinst operation.

lsnim -1 ClientA ClientA: Class Type = machines = standalone Connect Platform = shell = chrp Netboot_kernel = mp if1 Cable type1 = master_net ClientA 0 = bnc Cstate Prev state = BOS installation has been enabled = ready for a NIM operation Mstate = currently running = boot = 5305_1pp Boot Lpp source Nim_script Spot = nim_script = 5305 spot Cpuid Control = 000ACD3A4C00 = master

Bootp failure : Make sure it's running

Sneaky network admins might turn off bootp on your NIM master. Typically this is done for security/auditing reasons. If bootp isn't running, even if you initiate the bosinst operation, the master will not start it for you.

lssrc -t bootps Service Command Description

Status /usr/sbin/bootpd bootpd /etc/bootptab active bootps

If this is set to "inoperative" try starting it from the command line

vi /etc/inetd.conf ==> make sure 'bootps' and 'tftp' are uncommented ==> save the file. # refresh -s inetd # lssrc -t bootps

Bootp failure : The /ctc/bootptab file This is where the master gets the information on which client should be making a request. This file should be empty (except for the commented informational section) unless a bootp operation has been initiated. Once initiated the most recent entry should be for the target client. It will look similar to this

ClientA:bf=/tftpboot/ClientA:ip=#.#.#.###:ht=ethernet:sa=#.#.#.###:sm=###.####.###.#:

You'll want to make sure all of the IP address entries are correct. If any of them are wrong then you have a definition issue with NIM

Bootp failure : The number 1 rule, nobody knows about The most common reason for bootp failure is not knowing what to put in the SMS menus for a correct "Client's Gateway" entry.

Earlier during the "installation" portion of the guide we briefly discussed the SMS menu entries. If your NIM master and client are on the SAME NIM network then you need to use the master's ip address as the gateway entry.

Client IP Address [###.###.###] Server IP Address [###,###.###] Gateway IP Address [###.###.###] Subnet Mask [###.###.###]

Only use the client's actual gateway address if the client is on a different NIM network than the master

Bootp failure : Routers / Network Admins / Access Denied If your master and client are on different NIM networks - and everything else is correct - and you're still getting bootp failures - your network admins may be at fault here. The router between your client and master may have bootp packet forwarding turned off. Again, this is in some environments considered to be a security risk

One thing you can do to test this theory is to set bootp into debug. What we're doing here is stopping the bootp daemon and restarting it with debugging turned on. This will lock the window that is currently open on the master so make sure you have a free window open.
 Doing this will also comment out bootp from your /ctc/inctd conf file, so make sure you uncomment it and manually restart it after your testing is complete.

This process below is what we would follow if all else above checks out correctly. We'll first reset and deallocate everything so we can start from scratch. To put bootp into debug on the NIM master

Window 1

nim -Fo reset # nim -o deallocate -a subclass=all # stopsrc -t bootps
ps -ef |grep bootp (just to make sure nothing is running) # bootpd -s -d -d -d -d

At this time your window will be locked. Then we are now listening for any bootp requests being made. If the master hears one it will display the information on this screen

Window 2

smitty nim_bosinst (and we setup for the install)

On the NIM client we run through the SMS screen as normal and kick off the boot from the adapter.

Two possibilities

1. Failure - If the master does NOT display any bootp request information in the locked window either the adapter you're using is bad, or the router between the client and master is set to not forward this broadcasted bootp request.

2. Failure - If the master receives it but does not send it back, you most likely have a problem with the ip addressing, the bosinst wasn't successful during the setup, or the master has a mac address issue with the client.

Remember, once you've completed your testing, just Ctrl-C out of Window1 and restart bootp.

The Fatal LEDs There are 7 LED hangs that we run into quite often. Again, we'll briefly discuss them, the causes, and I'll give the most common way to fix them. I can't guarantee that the solution will work every time, as sometimes LED hang resolutions take more than a few simple commands....but this should give you a good starting point for problem determination.

LED 605 : Device Driver Problems :

This indicates that the SPOT you have allocated does not have the correct device support to configure the NIM client's chosen adapter

To check your NIM SPOT for a specific fileset

nim -o lslpp |grep

The driver is likely missing or in a bad state. If you have a missing device driver you'll want to add that fileset into your NIM SPOT resource (see earlier in the guide for instructions).

LED 607 : Device Driver Problems II :

This is similar to a 605 in that it is a failure with your network card. In this case however it is the 'ifconfig' command that failed. The adapter may not be supported with the oslevel being used, the device driver in the SPOT may be too far downlevel, or the system or adapter firmware may need to be updated.

LED 608: Bad Network Information : Probably the most common NIM related LED hang. Somewhere in your NIM environment, you've given it some bad IP/NETWORK information. Start by checking hostname resolution, check the client's definition, the client's network definition, the master's network definition.....somewhere, something is wrong. Unfortunately, I can't really be more specific than that. Remove and readd the client to make sure NIM still believes it should be defined on the network it currently is defined on. A few years a go a 608 could also be caused by a downlevel SPOT, or a SPOT with low level filesets. This hasn't caused a 608 in a long time, but sometimes causes for LEDs change

LED 611 : NFS

Either (most commonly) something hosed up in NFS, or you've got a hostname resolution problem. NIM tends to get really picky about what is NFS exported, and how it got that way. Typically running a full NFS reset and recycle will clear up a 611.

To run a quick NFS cleanup simply execute the following commands on the NIM master As always, run a reset and deallocate of the NIM client first

nim -Fo reset

- # nim -o deallocate -a subclass=all
- # cd /etc # stopsrc -g nfs

IBM - NIM Setup Guide

in /var/statmon)

(alternatively you can just rename the exports file if you wish to keep it) # rm exports

- # im exports
 # touch exports
 # rm rmtab xtab (removing cache files)

cd /var/statmon
rm -rf ./
startsrc -g nfs (here you're removing 2 directories and a file. If you don't like rm -r commands feel free to remove them however you feel comfortable. Just make SURE you're

smitty nim_bosinst (setup for your install again)

Typically, all other things being good, this will clear up a 611. If not, start focusing on a hostname resolution issue.

LED 613 : Routing incorrectly You have bad routing information in your setup. Unlike an LED 608, this is at least more specific. Check the "routing!" information listed for your client

lsnim -l

It's probably wrong. You can also check your client's network information and your master's network information.

lsnim -l

LED 622 : Speaking at Different Speeds You'll not actually notice a failure here, because the install WILL proceed.....it'll just take forEVER to do so.

Your NIM master, router (if one exists), and/or client are probably talking at different speeds.....(usually). Make sure that your master, client, and router are all set at the same adapter speed. Sometimes you can have them all matched up and you're still going dog slow during your install.

LED 888 : Access Denied!!

Your NIM client does not have root access to the SPOT that has been allocated. Ideally when you kick off your NIM install, the entry for the exports in /etc/exports should read similar to :

/export/nim/spot/5305 spot/usr -ro,root=ClientA,access=ClientA:

A bad entry can look similar to

/export/nim/spot/5305 spot/usr -ro,anon=ClientA

To resolve this

nim -Fo reset

- # nim -ro reset
 # nim -o deallocate -a subclass=all
 # nim -Fo reset
- # nim -o deallocate -a subclass=all
 # cd /etc

stopsrc -g nfs
rm exports
touch exports (alternatively you can just rename the exports file if you wish to keep it)

rm rmtab xtab (removing cache files)
cd /var/statmon

rm -rf ./ # startsrc -g nfs (here you're removing 2 directories and a file. If you don't like rm -r commands feel free to remove them however you feel comfortable. Just make SURE you're in /var/statmon)

startsrc -g nimesis (recycle the nimesis daemon)
startsrc -s nimesis
smitty nim_bosinst (setup for your install again)

Kicking off the bosinst operation should export the SPOT and all other resources properly.

Thank you very much for taking the time to read through this guide. I hope it has been not only helpful but an easy read. If you feel you have found any mistakes or inconsistencies please don't hesitate to email me at storm@us.ibm.com. If you have any technical questions concerning the document, please follow normal support procedures and open a PMR. The first available technician in the Install team will be happy to assist you.

Rate this page: 🕕

Rated by 5 users

Copyright and trademark information

IBM the IBM logo and ibm com are trademarks of International Business Machines Corp., registered in many jurisdictions worldwide. Other product and service names might be trademarks of IBM or other companies. A current list of IBM trademarks is available on the Web at "Copyright and trademark information" at www.ibm.com/legal/copytrade.shtml