Sponsored Content
Top Forums Programming How to sleep and wake a thread??? Post 302582575 by pflynn on Friday 16th of December 2011 11:24:53 AM
Old 12-16-2011
Looks like you have a typical synchronization problem. One such you would like to use conditional variables to solve. Have a look at pthread_cond_wait, pthread_cond_signal, mutexes and related stuff.
 

7 More Discussions You Might Find Interesting

1. UNIX for Advanced & Expert Users

Wake on Lan script

Im old to Unix but new to scripting I have a MacBook running osx that I want to use as an nfs client. The server will be a linux box with a wake on lan card. Here's the idea. Run a cron command on the mac every minute that checks if I am on my home wireless network (the linux box is wired to... (0 Replies)
Discussion started by: anon0mus
0 Replies

2. Shell Programming and Scripting

Wake on LAN script

m old to Unix but new to scripting I have a MacBook running osx that I want to use as an nfs client. The server will be a linux box with a wake on lan card. Here's the idea. Run a cron command on the mac every minute that checks if I am on my home wireless network (the linux box is wired to... (6 Replies)
Discussion started by: anon0mus
6 Replies

3. Programming

how to wake up a thread that blocking at epoll_wait?

I have two threads: one maintains a thread-safe message queue (handle this queue at the beginning of every loop) and deals with tcp connections, the other one posts message to the former one. the problem is, while the former one was blocking at epoll_wait, it's not sure that how long until the... (0 Replies)
Discussion started by: cometeor
0 Replies

4. UNIX for Advanced & Expert Users

wake up user space thread from kernel space ISR

Hello, I'm searching for a proper way to let the kernel space ISR(implemented in a kernel module) wake up a user space thread on a hardware interrupt. Except for sending a real-time signal, is it possible to use a semaphore? I've searched it on google, but it seems impossible to share a... (0 Replies)
Discussion started by: aaronwong
0 Replies

5. Shell Programming and Scripting

Wrapping 'sleep' with my 'resleep' function (Resettable sleep)

This is a very crude attempt in Bash at something that I needed but didn't seem to find in the 'sleep' command. However, I would like to be able to do it without the need for the temp file. Please go easy on me if this is already possible in some other way: How many times have you used the... (5 Replies)
Discussion started by: deckard
5 Replies

6. UNIX for Dummies Questions & Answers

Linux Device Driver: how can an ISR wake up a user-thread?

Hi all, Is it possible to do the following in Linux (kernel 2.6.x): - A user-space thread goes to "sleep". Using any call/mechanism - On a hardware generated interrupt, the Interrupt handler (ISR) "wakes" the sleeping user-thread. I have seen wait_event() and wake_up() but it appears... (1 Reply)
Discussion started by: agaurav
1 Replies

7. UNIX for Dummies Questions & Answers

Computer wake commands

I'm a OS X user (MacBook Pro, OS X Lion) and I need it to wake up on Mondays, Wednesdays, Thursdays and Saturdays at 9:00 AM on the rest of the days of the week at 7:00 I issue the following commands: sudo pmset repeat wake MWRS 09:00:00 for the former sudo pmset repeat wake TFU... (1 Reply)
Discussion started by: scrutinizerix
1 Replies
PTHREAD_COND_BROADCAST(3P)				     POSIX Programmer's Manual					PTHREAD_COND_BROADCAST(3P)

PROLOG
This manual page is part of the POSIX Programmer's Manual. The Linux implementation of this interface may differ (consult the correspond- ing Linux manual page for details of Linux behavior), or the interface may not be implemented on Linux. NAME
pthread_cond_broadcast, pthread_cond_signal - broadcast or signal a condition SYNOPSIS
#include <pthread.h> int pthread_cond_broadcast(pthread_cond_t *cond); int pthread_cond_signal(pthread_cond_t *cond); DESCRIPTION
These functions shall unblock threads blocked on a condition variable. The pthread_cond_broadcast() function shall unblock all threads currently blocked on the specified condition variable cond. The pthread_cond_signal() function shall unblock at least one of the threads that are blocked on the specified condition variable cond (if any threads are blocked on cond). If more than one thread is blocked on a condition variable, the scheduling policy shall determine the order in which threads are unblocked. When each thread unblocked as a result of a pthread_cond_broadcast() or pthread_cond_signal() returns from its call to pthread_cond_wait() or pthread_cond_timedwait(), the thread shall own the mutex with which it called pthread_cond_wait() or pthread_cond_timedwait(). The thread(s) that are unblocked shall contend for the mutex according to the scheduling policy (if applicable), and as if each had called pthread_mutex_lock(). The pthread_cond_broadcast() or pthread_cond_signal() functions may be called by a thread whether or not it currently owns the mutex that threads calling pthread_cond_wait() or pthread_cond_timedwait() have associated with the condition variable during their waits; however, if predictable scheduling behavior is required, then that mutex shall be locked by the thread calling pthread_cond_broadcast() or pthread_cond_signal(). The pthread_cond_broadcast() and pthread_cond_signal() functions shall have no effect if there are no threads currently blocked on cond. RETURN VALUE
If successful, the pthread_cond_broadcast() and pthread_cond_signal() functions shall return zero; otherwise, an error number shall be returned to indicate the error. ERRORS
The pthread_cond_broadcast() and pthread_cond_signal() function may fail if: EINVAL The value cond does not refer to an initialized condition variable. These functions shall not return an error code of [EINTR]. The following sections are informative. EXAMPLES
None. APPLICATION USAGE
The pthread_cond_broadcast() function is used whenever the shared-variable state has been changed in a way that more than one thread can proceed with its task. Consider a single producer/multiple consumer problem, where the producer can insert multiple items on a list that is accessed one item at a time by the consumers. By calling the pthread_cond_broadcast() function, the producer would notify all consumers that might be waiting, and thereby the application would receive more throughput on a multi-processor. In addition, pthread_cond_broad- cast() makes it easier to implement a read-write lock. The pthread_cond_broadcast() function is needed in order to wake up all waiting readers when a writer releases its lock. Finally, the two-phase commit algorithm can use this broadcast function to notify all clients of an impending transaction commit. It is not safe to use the pthread_cond_signal() function in a signal handler that is invoked asynchronously. Even if it were safe, there would still be a race between the test of the Boolean pthread_cond_wait() that could not be efficiently eliminated. Mutexes and condition variables are thus not suitable for releasing a waiting thread by signaling from code running in a signal handler. RATIONALE
Multiple Awakenings by Condition Signal On a multi-processor, it may be impossible for an implementation of pthread_cond_signal() to avoid the unblocking of more than one thread blocked on a condition variable. For example, consider the following partial implementation of pthread_cond_wait() and pthread_cond_sig- nal(), executed by two threads in the order given. One thread is trying to wait on the condition variable, another is concurrently execut- ing pthread_cond_signal(), while a third thread is already waiting. pthread_cond_wait(mutex, cond): value = cond->value; /* 1 */ pthread_mutex_unlock(mutex); /* 2 */ pthread_mutex_lock(cond->mutex); /* 10 */ if (value == cond->value) { /* 11 */ me->next_cond = cond->waiter; cond->waiter = me; pthread_mutex_unlock(cond->mutex); unable_to_run(me); } else pthread_mutex_unlock(cond->mutex); /* 12 */ pthread_mutex_lock(mutex); /* 13 */ pthread_cond_signal(cond): pthread_mutex_lock(cond->mutex); /* 3 */ cond->value++; /* 4 */ if (cond->waiter) { /* 5 */ sleeper = cond->waiter; /* 6 */ cond->waiter = sleeper->next_cond; /* 7 */ able_to_run(sleeper); /* 8 */ } pthread_mutex_unlock(cond->mutex); /* 9 */ The effect is that more than one thread can return from its call to pthread_cond_wait() or pthread_cond_timedwait() as a result of one call to pthread_cond_signal(). This effect is called "spurious wakeup". Note that the situation is self-correcting in that the number of threads that are so awakened is finite; for example, the next thread to call pthread_cond_wait() after the sequence of events above blocks. While this problem could be resolved, the loss of efficiency for a fringe condition that occurs only rarely is unacceptable, especially given that one has to check the predicate associated with a condition variable anyway. Correcting this problem would unnecessarily reduce the degree of concurrency in this basic building block for all higher-level synchronization operations. An added benefit of allowing spurious wakeups is that applications are forced to code a predicate-testing-loop around the condition wait. This also makes the application tolerate superfluous condition broadcasts or signals on the same condition variable that may be coded in some other part of the application. The resulting applications are thus more robust. Therefore, IEEE Std 1003.1-2001 explicitly documents that spurious wakeups may occur. FUTURE DIRECTIONS
None. SEE ALSO
pthread_cond_destroy(), pthread_cond_timedwait(), the Base Definitions volume of IEEE Std 1003.1-2001, <pthread.h> COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1, 2003 Edition, Standard for Information Technol- ogy -- Portable Operating System Interface (POSIX), The Open Group Base Specifications Issue 6, Copyright (C) 2001-2003 by the Institute of Electrical and Electronics Engineers, Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The original Standard can be obtained online at http://www.opengroup.org/unix/online.html . IEEE
/The Open Group 2003 PTHREAD_COND_BROADCAST(3P)
All times are GMT -4. The time now is 07:36 AM.
Unix & Linux Forums Content Copyright 1993-2022. All Rights Reserved.
Privacy Policy