Linux and UNIX Man Pages

Linux & Unix Commands - Search Man Pages

zpprfs(3) [debian man page]

zpprfs.f(3)							      LAPACK							       zpprfs.f(3)

NAME
zpprfs.f - SYNOPSIS
Functions/Subroutines subroutine zpprfs (UPLO, N, NRHS, AP, AFP, B, LDB, X, LDX, FERR, BERR, WORK, RWORK, INFO) ZPPRFS Function/Subroutine Documentation subroutine zpprfs (characterUPLO, integerN, integerNRHS, complex*16, dimension( * )AP, complex*16, dimension( * )AFP, complex*16, dimension( ldb, * )B, integerLDB, complex*16, dimension( ldx, * )X, integerLDX, double precision, dimension( * )FERR, double precision, dimension( * )BERR, complex*16, dimension( * )WORK, double precision, dimension( * )RWORK, integerINFO) ZPPRFS Purpose: ZPPRFS improves the computed solution to a system of linear equations when the coefficient matrix is Hermitian positive definite and packed, and provides error bounds and backward error estimates for the solution. Parameters: UPLO UPLO is CHARACTER*1 = 'U': Upper triangle of A is stored; = 'L': Lower triangle of A is stored. N N is INTEGER The order of the matrix A. N >= 0. NRHS NRHS is INTEGER The number of right hand sides, i.e., the number of columns of the matrices B and X. NRHS >= 0. AP AP is COMPLEX*16 array, dimension (N*(N+1)/2) The upper or lower triangle of the Hermitian matrix A, packed columnwise in a linear array. The j-th column of A is stored in the array AP as follows: if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n. AFP AFP is COMPLEX*16 array, dimension (N*(N+1)/2) The triangular factor U or L from the Cholesky factorization A = U**H*U or A = L*L**H, as computed by DPPTRF/ZPPTRF, packed columnwise in a linear array in the same format as A (see AP). B B is COMPLEX*16 array, dimension (LDB,NRHS) The right hand side matrix B. LDB LDB is INTEGER The leading dimension of the array B. LDB >= max(1,N). X X is COMPLEX*16 array, dimension (LDX,NRHS) On entry, the solution matrix X, as computed by ZPPTRS. On exit, the improved solution matrix X. LDX LDX is INTEGER The leading dimension of the array X. LDX >= max(1,N). FERR FERR is DOUBLE PRECISION array, dimension (NRHS) The estimated forward error bound for each solution vector X(j) (the j-th column of the solution matrix X). If XTRUE is the true solution corresponding to X(j), FERR(j) is an estimated upper bound for the magnitude of the largest element in (X(j) - XTRUE) divided by the magnitude of the largest element in X(j). The estimate is as reliable as the estimate for RCOND, and is almost always a slight overestimate of the true error. BERR BERR is DOUBLE PRECISION array, dimension (NRHS) The componentwise relative backward error of each solution vector X(j) (i.e., the smallest relative change in any element of A or B that makes X(j) an exact solution). WORK WORK is COMPLEX*16 array, dimension (2*N) RWORK RWORK is DOUBLE PRECISION array, dimension (N) INFO INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value Internal Parameters: ITMAX is the maximum number of steps of iterative refinement. Author: Univ. of Tennessee Univ. of California Berkeley Univ. of Colorado Denver NAG Ltd. Date: November 2011 Definition at line 171 of file zpprfs.f. Author Generated automatically by Doxygen for LAPACK from the source code. Version 3.4.1 Sun May 26 2013 zpprfs.f(3)

Check Out this Related Man Page

cpprfs.f(3)							      LAPACK							       cpprfs.f(3)

NAME
cpprfs.f - SYNOPSIS
Functions/Subroutines subroutine cpprfs (UPLO, N, NRHS, AP, AFP, B, LDB, X, LDX, FERR, BERR, WORK, RWORK, INFO) CPPRFS Function/Subroutine Documentation subroutine cpprfs (characterUPLO, integerN, integerNRHS, complex, dimension( * )AP, complex, dimension( * )AFP, complex, dimension( ldb, * )B, integerLDB, complex, dimension( ldx, * )X, integerLDX, real, dimension( * )FERR, real, dimension( * )BERR, complex, dimension( * )WORK, real, dimension( * )RWORK, integerINFO) CPPRFS Purpose: CPPRFS improves the computed solution to a system of linear equations when the coefficient matrix is Hermitian positive definite and packed, and provides error bounds and backward error estimates for the solution. Parameters: UPLO UPLO is CHARACTER*1 = 'U': Upper triangle of A is stored; = 'L': Lower triangle of A is stored. N N is INTEGER The order of the matrix A. N >= 0. NRHS NRHS is INTEGER The number of right hand sides, i.e., the number of columns of the matrices B and X. NRHS >= 0. AP AP is COMPLEX array, dimension (N*(N+1)/2) The upper or lower triangle of the Hermitian matrix A, packed columnwise in a linear array. The j-th column of A is stored in the array AP as follows: if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n. AFP AFP is COMPLEX array, dimension (N*(N+1)/2) The triangular factor U or L from the Cholesky factorization A = U**H*U or A = L*L**H, as computed by SPPTRF/CPPTRF, packed columnwise in a linear array in the same format as A (see AP). B B is COMPLEX array, dimension (LDB,NRHS) The right hand side matrix B. LDB LDB is INTEGER The leading dimension of the array B. LDB >= max(1,N). X X is COMPLEX array, dimension (LDX,NRHS) On entry, the solution matrix X, as computed by CPPTRS. On exit, the improved solution matrix X. LDX LDX is INTEGER The leading dimension of the array X. LDX >= max(1,N). FERR FERR is REAL array, dimension (NRHS) The estimated forward error bound for each solution vector X(j) (the j-th column of the solution matrix X). If XTRUE is the true solution corresponding to X(j), FERR(j) is an estimated upper bound for the magnitude of the largest element in (X(j) - XTRUE) divided by the magnitude of the largest element in X(j). The estimate is as reliable as the estimate for RCOND, and is almost always a slight overestimate of the true error. BERR BERR is REAL array, dimension (NRHS) The componentwise relative backward error of each solution vector X(j) (i.e., the smallest relative change in any element of A or B that makes X(j) an exact solution). WORK WORK is COMPLEX array, dimension (2*N) RWORK RWORK is REAL array, dimension (N) INFO INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value Internal Parameters: ITMAX is the maximum number of steps of iterative refinement. Author: Univ. of Tennessee Univ. of California Berkeley Univ. of Colorado Denver NAG Ltd. Date: November 2011 Definition at line 171 of file cpprfs.f. Author Generated automatically by Doxygen for LAPACK from the source code. Version 3.4.1 Sun May 26 2013 cpprfs.f(3)
Man Page