Linux and UNIX Man Pages

Linux & Unix Commands - Search Man Pages

slarft(3) [debian man page]

slarft.f(3)							      LAPACK							       slarft.f(3)

NAME
slarft.f - SYNOPSIS
Functions/Subroutines subroutine slarft (DIRECT, STOREV, N, K, V, LDV, TAU, T, LDT) SLARFT Function/Subroutine Documentation subroutine slarft (characterDIRECT, characterSTOREV, integerN, integerK, real, dimension( ldv, * )V, integerLDV, real, dimension( * )TAU, real, dimension( ldt, * )T, integerLDT) SLARFT Purpose: SLARFT forms the triangular factor T of a real block reflector H of order n, which is defined as a product of k elementary reflectors. If DIRECT = 'F', H = H(1) H(2) . . . H(k) and T is upper triangular; If DIRECT = 'B', H = H(k) . . . H(2) H(1) and T is lower triangular. If STOREV = 'C', the vector which defines the elementary reflector H(i) is stored in the i-th column of the array V, and H = I - V * T * V**T If STOREV = 'R', the vector which defines the elementary reflector H(i) is stored in the i-th row of the array V, and H = I - V**T * T * V Parameters: DIRECT DIRECT is CHARACTER*1 Specifies the order in which the elementary reflectors are multiplied to form the block reflector: = 'F': H = H(1) H(2) . . . H(k) (Forward) = 'B': H = H(k) . . . H(2) H(1) (Backward) STOREV STOREV is CHARACTER*1 Specifies how the vectors which define the elementary reflectors are stored (see also Further Details): = 'C': columnwise = 'R': rowwise N N is INTEGER The order of the block reflector H. N >= 0. K K is INTEGER The order of the triangular factor T (= the number of elementary reflectors). K >= 1. V V is REAL array, dimension (LDV,K) if STOREV = 'C' (LDV,N) if STOREV = 'R' The matrix V. See further details. LDV LDV is INTEGER The leading dimension of the array V. If STOREV = 'C', LDV >= max(1,N); if STOREV = 'R', LDV >= K. TAU TAU is REAL array, dimension (K) TAU(i) must contain the scalar factor of the elementary reflector H(i). T T is REAL array, dimension (LDT,K) The k by k triangular factor T of the block reflector. If DIRECT = 'F', T is upper triangular; if DIRECT = 'B', T is lower triangular. The rest of the array is not used. LDT LDT is INTEGER The leading dimension of the array T. LDT >= K. Author: Univ. of Tennessee Univ. of California Berkeley Univ. of Colorado Denver NAG Ltd. Date: April 2012 Further Details: The shape of the matrix V and the storage of the vectors which define the H(i) is best illustrated by the following example with n = 5 and k = 3. The elements equal to 1 are not stored. DIRECT = 'F' and STOREV = 'C': DIRECT = 'F' and STOREV = 'R': V = ( 1 ) V = ( 1 v1 v1 v1 v1 ) ( v1 1 ) ( 1 v2 v2 v2 ) ( v1 v2 1 ) ( 1 v3 v3 ) ( v1 v2 v3 ) ( v1 v2 v3 ) DIRECT = 'B' and STOREV = 'C': DIRECT = 'B' and STOREV = 'R': V = ( v1 v2 v3 ) V = ( v1 v1 1 ) ( v1 v2 v3 ) ( v2 v2 v2 1 ) ( 1 v2 v3 ) ( v3 v3 v3 v3 1 ) ( 1 v3 ) ( 1 ) Definition at line 164 of file slarft.f. Author Generated automatically by Doxygen for LAPACK from the source code. Version 3.4.1 Sun May 26 2013 slarft.f(3)

Check Out this Related Man Page

SLARFT(l)								 )								 SLARFT(l)

NAME
SLARFT - form the triangular factor T of a real block reflector H of order n, which is defined as a product of k elementary reflectors SYNOPSIS
SUBROUTINE SLARFT( DIRECT, STOREV, N, K, V, LDV, TAU, T, LDT ) CHARACTER DIRECT, STOREV INTEGER K, LDT, LDV, N REAL T( LDT, * ), TAU( * ), V( LDV, * ) PURPOSE
SLARFT forms the triangular factor T of a real block reflector H of order n, which is defined as a product of k elementary reflectors. If DIRECT = 'F', H = H(1) H(2) . . . H(k) and T is upper triangular; If DIRECT = 'B', H = H(k) . . . H(2) H(1) and T is lower triangular. If STOREV = 'C', the vector which defines the elementary reflector H(i) is stored in the i-th column of the array V, and H = I - V * T * V' If STOREV = 'R', the vector which defines the elementary reflector H(i) is stored in the i-th row of the array V, and H = I - V' * T * V ARGUMENTS
DIRECT (input) CHARACTER*1 Specifies the order in which the elementary reflectors are multiplied to form the block reflector: = 'F': H = H(1) H(2) . . . H(k) (Forward) = 'B': H = H(k) . . . H(2) H(1) (Backward) STOREV (input) CHARACTER*1 Specifies how the vectors which define the elementary reflectors are stored (see also Further Details): = 'R': rowwise N (input) INTEGER The order of the block reflector H. N >= 0. K (input) INTEGER The order of the triangular factor T (= the number of elementary reflectors). K >= 1. V (input/output) REAL array, dimension (LDV,K) if STOREV = 'C' (LDV,N) if STOREV = 'R' The matrix V. See further details. LDV (input) INTEGER The leading dimension of the array V. If STOREV = 'C', LDV >= max(1,N); if STOREV = 'R', LDV >= K. TAU (input) REAL array, dimension (K) TAU(i) must contain the scalar factor of the elementary reflector H(i). T (output) REAL array, dimension (LDT,K) The k by k triangular factor T of the block reflector. If DIRECT = 'F', T is upper triangular; if DIRECT = 'B', T is lower trian- gular. The rest of the array is not used. LDT (input) INTEGER The leading dimension of the array T. LDT >= K. FURTHER DETAILS
The shape of the matrix V and the storage of the vectors which define the H(i) is best illustrated by the following example with n = 5 and k = 3. The elements equal to 1 are not stored; the corresponding array elements are modified but restored on exit. The rest of the array is not used. DIRECT = 'F' and STOREV = 'C': DIRECT = 'F' and STOREV = 'R': V = ( 1 ) V = ( 1 v1 v1 v1 v1 ) ( v1 1 ) ( 1 v2 v2 v2 ) ( v1 v2 1 ) ( 1 v3 v3 ) ( v1 v2 v3 ) ( v1 v2 v3 ) DIRECT = 'B' and STOREV = 'C': DIRECT = 'B' and STOREV = 'R': V = ( v1 v2 v3 ) V = ( v1 v1 1 ) ( v1 v2 v3 ) ( v2 v2 v2 1 ) ( 1 v2 v3 ) ( v3 v3 v3 v3 1 ) ( 1 v3 ) ( 1 ) LAPACK version 3.0 15 June 2000 SLARFT(l)
Man Page