Linux and UNIX Man Pages

Linux & Unix Commands - Search Man Pages

sgeqr2p(3) [debian man page]

sgeqr2p.f(3)							      LAPACK							      sgeqr2p.f(3)

NAME
sgeqr2p.f - SYNOPSIS
Functions/Subroutines subroutine sgeqr2p (M, N, A, LDA, TAU, WORK, INFO) SGEQR2P Function/Subroutine Documentation subroutine sgeqr2p (integerM, integerN, real, dimension( lda, * )A, integerLDA, real, dimension( * )TAU, real, dimension( * )WORK, integerINFO) SGEQR2P Purpose: SGEQR2P computes a QR factorization of a real m by n matrix A: A = Q * R. Parameters: M M is INTEGER The number of rows of the matrix A. M >= 0. N N is INTEGER The number of columns of the matrix A. N >= 0. A A is REAL array, dimension (LDA,N) On entry, the m by n matrix A. On exit, the elements on and above the diagonal of the array contain the min(m,n) by n upper trapezoidal matrix R (R is upper triangular if m >= n); the elements below the diagonal, with the array TAU, represent the orthogonal matrix Q as a product of elementary reflectors (see Further Details). LDA LDA is INTEGER The leading dimension of the array A. LDA >= max(1,M). TAU TAU is REAL array, dimension (min(M,N)) The scalar factors of the elementary reflectors (see Further Details). WORK WORK is REAL array, dimension (N) INFO INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value Author: Univ. of Tennessee Univ. of California Berkeley Univ. of Colorado Denver NAG Ltd. Date: November 2011 Further Details: The matrix Q is represented as a product of elementary reflectors Q = H(1) H(2) . . . H(k), where k = min(m,n). Each H(i) has the form H(i) = I - tau * v * v**T where tau is a real scalar, and v is a real vector with v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in A(i+1:m,i), and tau in TAU(i). Definition at line 122 of file sgeqr2p.f. Author Generated automatically by Doxygen for LAPACK from the source code. Version 3.4.1 Sun May 26 2013 sgeqr2p.f(3)

Check Out this Related Man Page

sgeqr2p.f(3)							      LAPACK							      sgeqr2p.f(3)

NAME
sgeqr2p.f - SYNOPSIS
Functions/Subroutines subroutine sgeqr2p (M, N, A, LDA, TAU, WORK, INFO) SGEQR2P computes the QR factorization of a general rectangular matrix with non-negative diagonal elements using an unblocked algorithm. Function/Subroutine Documentation subroutine sgeqr2p (integerM, integerN, real, dimension( lda, * )A, integerLDA, real, dimension( * )TAU, real, dimension( * )WORK, integerINFO) SGEQR2P computes the QR factorization of a general rectangular matrix with non-negative diagonal elements using an unblocked algorithm. Purpose: SGEQR2P computes a QR factorization of a real m by n matrix A: A = Q * R. Parameters: M M is INTEGER The number of rows of the matrix A. M >= 0. N N is INTEGER The number of columns of the matrix A. N >= 0. A A is REAL array, dimension (LDA,N) On entry, the m by n matrix A. On exit, the elements on and above the diagonal of the array contain the min(m,n) by n upper trapezoidal matrix R (R is upper triangular if m >= n); the elements below the diagonal, with the array TAU, represent the orthogonal matrix Q as a product of elementary reflectors (see Further Details). LDA LDA is INTEGER The leading dimension of the array A. LDA >= max(1,M). TAU TAU is REAL array, dimension (min(M,N)) The scalar factors of the elementary reflectors (see Further Details). WORK WORK is REAL array, dimension (N) INFO INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value Author: Univ. of Tennessee Univ. of California Berkeley Univ. of Colorado Denver NAG Ltd. Date: September 2012 Further Details: The matrix Q is represented as a product of elementary reflectors Q = H(1) H(2) . . . H(k), where k = min(m,n). Each H(i) has the form H(i) = I - tau * v * v**T where tau is a real scalar, and v is a real vector with v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in A(i+1:m,i), and tau in TAU(i). Definition at line 122 of file sgeqr2p.f. Author Generated automatically by Doxygen for LAPACK from the source code. Version 3.4.2 Tue Sep 25 2012 sgeqr2p.f(3)
Man Page