Linux and UNIX Man Pages

Linux & Unix Commands - Search Man Pages

struct_usb_composite_dev(9) [centos man page]

STRUCT 
USB_COMPOSITE(9) Kernel Mode Gadget API STRUCT USB_COMPOSITE(9) NAME
struct_usb_composite_dev - represents one composite usb gadget SYNOPSIS
struct usb_composite_dev { struct usb_gadget * gadget; struct usb_request * req; struct usb_configuration * config; }; MEMBERS
gadget read-only, abstracts the gadget's usb peripheral controller req used for control responses; buffer is pre-allocated config the currently active configuration DESCRIPTION
One of these devices is allocated and initialized before the associated device driver's bind is called. OPEN ISSUE
it appears that some WUSB devices will need to be built by combining a normal (wired) gadget with a wireless one. This revision of the gadget framework should probably try to make sure doing that won't hurt too much. ONE NOTION FOR HOW TO HANDLE WIRELESS USB DEVICES INVOLVES
(a) a second gadget here, discovery mechanism TBD, but likely needing separate "register/unregister WUSB gadget" calls; (b) updates to usb_gadget to include flags "is it wireless", "is it wired", plus (presumably in a wrapper structure) bandgroup and PHY info; (c) presumably a wireless_ep wrapping a usb_ep, and reporting wireless-specific parameters like maxburst and maxsequence; (d) configurations that are specific to wireless links; (e) function drivers that understand wireless configs and will support wireless for (additional) function instances; (f) a function to support association setup (like CBAF), not necessarily requiring a wireless adapter; (g) composite device setup that can create one or more wireless configs, including appropriate association setup support; (h) more, TBD. AUTHOR
David Brownell <dbrownell@users.sourceforge.net> Author. COPYRIGHT
Kernel Hackers Manual 3.10 June 2014 STRUCT USB_COMPOSITE(9)

Check Out this Related Man Page

STRUCT 
USB_GADGET_DR(9) Kernel Mode Gadget API STRUCT USB_GADGET_DR(9) NAME
struct_usb_gadget_driver - driver for usb 'slave' devices SYNOPSIS
struct usb_gadget_driver { char * function; enum usb_device_speed max_speed; int (* bind) (struct usb_gadget *gadget,struct usb_gadget_driver *driver); void (* unbind) (struct usb_gadget *); int (* setup) (struct usb_gadget *,const struct usb_ctrlrequest *); void (* disconnect) (struct usb_gadget *); void (* suspend) (struct usb_gadget *); void (* resume) (struct usb_gadget *); struct device_driver driver; }; MEMBERS
function String describing the gadget's function max_speed Highest speed the driver handles. bind the driver's bind callback unbind Invoked when the driver is unbound from a gadget, usually from rmmod (after a disconnect is reported). Called in a context that permits sleeping. setup Invoked for ep0 control requests that aren't handled by the hardware level driver. Most calls must be handled by the gadget driver, including descriptor and configuration management. The 16 bit members of the setup data are in USB byte order. Called in_interrupt; this may not sleep. Driver queues a response to ep0, or returns negative to stall. disconnect Invoked after all transfers have been stopped, when the host is disconnected. May be called in_interrupt; this may not sleep. Some devices can't detect disconnect, so this might not be called except as part of controller shutdown. suspend Invoked on USB suspend. May be called in_interrupt. resume Invoked on USB resume. May be called in_interrupt. driver Driver model state for this driver. DESCRIPTION
Devices are disabled till a gadget driver successfully binds, which means the driver will handle setup requests needed to enumerate (and meet "chapter 9" requirements) then do some useful work. If gadget->is_otg is true, the gadget driver must provide an OTG descriptor during enumeration, or else fail the bind call. In such cases, no USB traffic may flow until both bind returns without having called usb_gadget_disconnect, and the USB host stack has initialized. Drivers use hardware-specific knowledge to configure the usb hardware. endpoint addressing is only one of several hardware characteristics that are in descriptors the ep0 implementation returns from setup calls. Except for ep0 implementation, most driver code shouldn't need change to run on top of different usb controllers. It'll use endpoints set up by that ep0 implementation. The usb controller driver handles a few standard usb requests. Those include set_address, and feature flags for devices, interfaces, and endpoints (the get_status, set_feature, and clear_feature requests). Accordingly, the driver's setup callback must always implement all get_descriptor requests, returning at least a device descriptor and a configuration descriptor. Drivers must make sure the endpoint descriptors match any hardware constraints. Some hardware also constrains other descriptors. (The pxa250 allows only configurations 1, 2, or 3). The driver's setup callback must also implement set_configuration, and should also implement set_interface, get_configuration, and get_interface. Setting a configuration (or interface) is where endpoints should be activated or (config 0) shut down. (Note that only the default control endpoint is supported. Neither hosts nor devices generally support control traffic except to ep0.) Most devices will ignore USB suspend/resume operations, and so will not provide those callbacks. However, some may need to change modes when the host is not longer directing those activities. For example, local controls (buttons, dials, etc) may need to be re-enabled since the (remote) host can't do that any longer; or an error state might be cleared, to make the device behave identically whether or not power is maintained. AUTHOR
David Brownell <dbrownell@users.sourceforge.net> Author. COPYRIGHT
Kernel Hackers Manual 3.10 June 2014 STRUCT USB_GADGET_DR(9)
Man Page