Go Back    


Recursive Search Engine for Linux and Unix Man Pages by Neo
Man Page or Keyword Search:   man
Select Man Page Set:       apropos Keyword Search (sections above)

PRINTF(3)			   BSD Library Functions Manual 			PRINTF(3)

NAME
     printf, fprintf, sprintf, snprintf, asprintf, dprintf, vprintf, vfprintf, vsprintf,
     vsnprintf, vasprintf, vdprintf -- formatted output conversion

LIBRARY
     Standard C Library (libc, -lc)

SYNOPSIS
     #define _WITH_DPRINTF
     #include <stdio.h>

     int
     printf(const char * restrict format, ...);

     int
     fprintf(FILE * restrict stream, const char * restrict format, ...);

     int
     sprintf(char * restrict str, const char * restrict format, ...);

     int
     snprintf(char * restrict str, size_t size, const char * restrict format, ...);

     int
     asprintf(char **ret, const char *format, ...);

     int
     dprintf(int, const char * restrict format, ...);

     #include <stdarg.h>

     int
     vprintf(const char * restrict format, va_list ap);

     int
     vfprintf(FILE * restrict stream, const char * restrict format, va_list ap);

     int
     vsprintf(char * restrict str, const char * restrict format, va_list ap);

     int
     vsnprintf(char * restrict str, size_t size, const char * restrict format, va_list ap);

     int
     vasprintf(char **ret, const char *format, va_list ap);

     int
     vdprintf(int fd, const char * restrict format, va_list ap);

DESCRIPTION
     The printf() family of functions produces output according to a format as described below.
     The printf() and vprintf() functions write output to stdout, the standard output stream;
     fprintf() and vfprintf() write output to the given output stream; dprintf() and vdprintf()
     write output to the given file descriptor; sprintf(), snprintf(), vsprintf(), and
     vsnprintf() write to the character string str; and asprintf() and vasprintf() dynamically
     allocate a new string with malloc(3).

     These functions write the output under the control of a format string that specifies how
     subsequent arguments (or arguments accessed via the variable-length argument facilities of
     stdarg(3)) are converted for output.

     These functions return the number of characters printed (not including the trailing '\0'
     used to end output to strings) or a negative value if an output error occurs, except for
     snprintf() and vsnprintf(), which return the number of characters that would have been
     printed if the size were unlimited (again, not including the final '\0').

     The asprintf() and vasprintf() functions set *ret to be a pointer to a buffer sufficiently
     large to hold the formatted string.  This pointer should be passed to free(3) to release the
     allocated storage when it is no longer needed.  If sufficient space cannot be allocated,
     asprintf() and vasprintf() will return -1 and set ret to be a NULL pointer.

     The snprintf() and vsnprintf() functions will write at most size-1 of the characters printed
     into the output string (the size'th character then gets the terminating '\0'); if the return
     value is greater than or equal to the size argument, the string was too short and some of
     the printed characters were discarded.  The output is always null-terminated.

     The sprintf() and vsprintf() functions effectively assume an infinite size.

     The format string is composed of zero or more directives: ordinary characters (not %), which
     are copied unchanged to the output stream; and conversion specifications, each of which
     results in fetching zero or more subsequent arguments.  Each conversion specification is
     introduced by the % character.  The arguments must correspond properly (after type promo-
     tion) with the conversion specifier.  After the %, the following appear in sequence:

     o	 An optional field, consisting of a decimal digit string followed by a $, specifying the
	 next argument to access.  If this field is not provided, the argument following the last
	 argument accessed will be used.  Arguments are numbered starting at 1.  If unaccessed
	 arguments in the format string are interspersed with ones that are accessed the results
	 will be indeterminate.

     o	 Zero or more of the following flags:

	 '#'	      The value should be converted to an ``alternate form''.  For c, d, i, n, p,
		      s, and u conversions, this option has no effect.	For o conversions, the
		      precision of the number is increased to force the first character of the
		      output string to a zero.	For x and X conversions, a non-zero result has
		      the string '0x' (or '0X' for X conversions) prepended to it.  For a, A, e,
		      E, f, F, g, and G conversions, the result will always contain a decimal
		      point, even if no digits follow it (normally, a decimal point appears in
		      the results of those conversions only if a digit follows).  For g and G
		      conversions, trailing zeros are not removed from the result as they would
		      otherwise be.

	 '0' (zero)   Zero padding.  For all conversions except n, the converted value is padded
		      on the left with zeros rather than blanks.  If a precision is given with a
		      numeric conversion (d, i, o, u, i, x, and X), the 0 flag is ignored.

	 '-'	      A negative field width flag; the converted value is to be left adjusted on
		      the field boundary.  Except for n conversions, the converted value is
		      padded on the right with blanks, rather than on the left with blanks or
		      zeros.  A - overrides a 0 if both are given.

	 ' ' (space)  A blank should be left before a positive number produced by a signed con-
		      version (a, A, d, e, E, f, F, g, G, or i).

	 '+'	      A sign must always be placed before a number produced by a signed conver-
		      sion.  A + overrides a space if both are used.

	 '''	      Decimal conversions (d, u, or i) or the integral portion of a floating
		      point conversion (f or F) should be grouped and separated by thousands
		      using the non-monetary separator returned by localeconv(3).

     o	 An optional decimal digit string specifying a minimum field width.  If the converted
	 value has fewer characters than the field width, it will be padded with spaces on the
	 left (or right, if the left-adjustment flag has been given) to fill out the field width.

     o	 An optional precision, in the form of a period . followed by an optional digit string.
	 If the digit string is omitted, the precision is taken as zero.  This gives the minimum
	 number of digits to appear for d, i, o, u, x, and X conversions, the number of digits to
	 appear after the decimal-point for a, A, e, E, f, and F conversions, the maximum number
	 of significant digits for g and G conversions, or the maximum number of characters to be
	 printed from a string for s conversions.

     o	 An optional length modifier, that specifies the size of the argument.	The following
	 length modifiers are valid for the d, i, n, o, u, x, or X conversion:

	 Modifier	   d, i 	  o, u, x, X		n
	 hh		   signed char	  unsigned char 	signed char *
	 h		   short	  unsigned short	short *
	 l (ell)	   long 	  unsigned long 	long *
	 ll (ell ell)	   long long	  unsigned long long	long long *
	 j		   intmax_t	  uintmax_t		intmax_t *
	 t		   ptrdiff_t	  (see note)		ptrdiff_t *
	 z		   (see note)	  size_t		(see note)
	 q (deprecated)    quad_t	  u_quad_t		quad_t *

	 Note: the t modifier, when applied to a o, u, x, or X conversion, indicates that the
	 argument is of an unsigned type equivalent in size to a ptrdiff_t.  The z modifier, when
	 applied to a d or i conversion, indicates that the argument is of a signed type equiva-
	 lent in size to a size_t.  Similarly, when applied to an n conversion, it indicates that
	 the argument is a pointer to a signed type equivalent in size to a size_t.

	 The following length modifier is valid for the a, A, e, E, f, F, g, or G conversion:

	 Modifier    a, A, e, E, f, F, g, G
	 l (ell)     double (ignored, same behavior as without it)
	 L	     long double

	 The following length modifier is valid for the c or s conversion:

	 Modifier    c	       s
	 l (ell)     wint_t    wchar_t *

     o	 A character that specifies the type of conversion to be applied.

     A field width or precision, or both, may be indicated by an asterisk '*' or an asterisk fol-
     lowed by one or more decimal digits and a '$' instead of a digit string.  In this case, an
     int argument supplies the field width or precision.  A negative field width is treated as a
     left adjustment flag followed by a positive field width; a negative precision is treated as
     though it were missing.  If a single format directive mixes positional (nn$) and non-posi-
     tional arguments, the results are undefined.

     The conversion specifiers and their meanings are:

     diouxX  The int (or appropriate variant) argument is converted to signed decimal (d and i),
	     unsigned octal (o), unsigned decimal (u), or unsigned hexadecimal (x and X) nota-
	     tion.  The letters ``abcdef'' are used for x conversions; the letters ``ABCDEF'' are
	     used for X conversions.  The precision, if any, gives the minimum number of digits
	     that must appear; if the converted value requires fewer digits, it is padded on the
	     left with zeros.

     DOU     The long int argument is converted to signed decimal, unsigned octal, or unsigned
	     decimal, as if the format had been ld, lo, or lu respectively.  These conversion
	     characters are deprecated, and will eventually disappear.

     eE      The double argument is rounded and converted in the style [-]d.ddde+-dd where there
	     is one digit before the decimal-point character and the number of digits after it is
	     equal to the precision; if the precision is missing, it is taken as 6; if the preci-
	     sion is zero, no decimal-point character appears.	An E conversion uses the letter
	     'E' (rather than 'e') to introduce the exponent.  The exponent always contains at
	     least two digits; if the value is zero, the exponent is 00.

	     For a, A, e, E, f, F, g, and G conversions, positive and negative infinity are rep-
	     resented as inf and -inf respectively when using the lowercase conversion character,
	     and INF and -INF respectively when using the uppercase conversion character.  Simi-
	     larly, NaN is represented as nan when using the lowercase conversion, and NAN when
	     using the uppercase conversion.

     fF      The double argument is rounded and converted to decimal notation in the style
	     [-]ddd.ddd, where the number of digits after the decimal-point character is equal to
	     the precision specification.  If the precision is missing, it is taken as 6; if the
	     precision is explicitly zero, no decimal-point character appears.	If a decimal
	     point appears, at least one digit appears before it.

     gG      The double argument is converted in style f or e (or F or E for G conversions).  The
	     precision specifies the number of significant digits.  If the precision is missing,
	     6 digits are given; if the precision is zero, it is treated as 1.	Style e is used
	     if the exponent from its conversion is less than -4 or greater than or equal to the
	     precision.  Trailing zeros are removed from the fractional part of the result; a
	     decimal point appears only if it is followed by at least one digit.

     aA      The double argument is rounded and converted to hexadecimal notation in the style
	     [-]0xh.hhhp[+-]d, where the number of digits after the hexadecimal-point character
	     is equal to the precision specification.  If the precision is missing, it is taken
	     as enough to represent the floating-point number exactly, and no rounding occurs.
	     If the precision is zero, no hexadecimal-point character appears.	The p is a lit-
	     eral character 'p', and the exponent consists of a positive or negative sign fol-
	     lowed by a decimal number representing an exponent of 2.  The A conversion uses the
	     prefix ``0X'' (rather than ``0x''), the letters ``ABCDEF'' (rather than ``abcdef'')
	     to represent the hex digits, and the letter 'P' (rather than 'p') to separate the
	     mantissa and exponent.

	     Note that there may be multiple valid ways to represent floating-point numbers in
	     this hexadecimal format.  For example, 0x1.92p+1, 0x3.24p+0, 0x6.48p-1, and 0xc.9p-2
	     are all equivalent.  FreeBSD 8.0 and later always prints finite non-zero numbers
	     using '1' as the digit before the hexadecimal point.  Zeroes are always represented
	     with a mantissa of 0 (preceded by a '-' if appropriate) and an exponent of +0.

     C	     Treated as c with the l (ell) modifier.

     c	     The int argument is converted to an unsigned char, and the resulting character is
	     written.

	     If the l (ell) modifier is used, the wint_t argument shall be converted to a
	     wchar_t, and the (potentially multi-byte) sequence representing the single wide
	     character is written, including any shift sequences.  If a shift sequence is used,
	     the shift state is also restored to the original state after the character.

     S	     Treated as s with the l (ell) modifier.

     s	     The char * argument is expected to be a pointer to an array of character type
	     (pointer to a string).  Characters from the array are written up to (but not includ-
	     ing) a terminating NUL character; if a precision is specified, no more than the num-
	     ber specified are written.  If a precision is given, no null character need be
	     present; if the precision is not specified, or is greater than the size of the
	     array, the array must contain a terminating NUL character.

	     If the l (ell) modifier is used, the wchar_t * argument is expected to be a pointer
	     to an array of wide characters (pointer to a wide string).  For each wide character
	     in the string, the (potentially multi-byte) sequence representing the wide character
	     is written, including any shift sequences.  If any shift sequence is used, the shift
	     state is also restored to the original state after the string.  Wide characters from
	     the array are written up to (but not including) a terminating wide NUL character; if
	     a precision is specified, no more than the number of bytes specified are written
	     (including shift sequences).  Partial characters are never written.  If a precision
	     is given, no null character need be present; if the precision is not specified, or
	     is greater than the number of bytes required to render the multibyte representation
	     of the string, the array must contain a terminating wide NUL character.

     p	     The void * pointer argument is printed in hexadecimal (as if by '%#x' or '%#lx').

     n	     The number of characters written so far is stored into the integer indicated by the
	     int * (or variant) pointer argument.  No argument is converted.

     %	     A '%' is written.	No argument is converted.  The complete conversion specification
	     is '%%'.

     The decimal point character is defined in the program's locale (category LC_NUMERIC).

     In no case does a non-existent or small field width cause truncation of a numeric field; if
     the result of a conversion is wider than the field width, the field is expanded to contain
     the conversion result.

EXAMPLES
     To print a date and time in the form ``Sunday, July 3, 10:02'', where weekday and month are
     pointers to strings:

	   #include <stdio.h>
	   fprintf(stdout, "%s, %s %d, %.2d:%.2d\n",
		   weekday, month, day, hour, min);

     To print pi to five decimal places:

	   #include <math.h>
	   #include <stdio.h>
	   fprintf(stdout, "pi = %.5f\n", 4 * atan(1.0));

     To allocate a 128 byte string and print into it:

	   #include <stdio.h>
	   #include <stdlib.h>
	   #include <stdarg.h>
	   char *newfmt(const char *fmt, ...)
	   {
		   char *p;
		   va_list ap;
		   if ((p = malloc(128)) == NULL)
			   return (NULL);
		   va_start(ap, fmt);
		   (void) vsnprintf(p, 128, fmt, ap);
		   va_end(ap);
		   return (p);
	   }

SECURITY CONSIDERATIONS
     The sprintf() and vsprintf() functions are easily misused in a manner which enables mali-
     cious users to arbitrarily change a running program's functionality through a buffer over-
     flow attack.  Because sprintf() and vsprintf() assume an infinitely long string, callers
     must be careful not to overflow the actual space; this is often hard to assure.  For safety,
     programmers should use the snprintf() interface instead.  For example:

     void
     foo(const char *arbitrary_string, const char *and_another)
     {
	     char onstack[8];

     #ifdef BAD
	     /*
	      * This first sprintf is bad behavior.  Do not use sprintf!
	      */
	     sprintf(onstack, "%s, %s", arbitrary_string, and_another);
     #else
	     /*
	      * The following two lines demonstrate better use of
	      * snprintf().
	      */
	     snprintf(onstack, sizeof(onstack), "%s, %s", arbitrary_string,
		 and_another);
     #endif
     }

     The printf() and sprintf() family of functions are also easily misused in a manner allowing
     malicious users to arbitrarily change a running program's functionality by either causing
     the program to print potentially sensitive data ``left on the stack'', or causing it to gen-
     erate a memory fault or bus error by dereferencing an invalid pointer.

     %n can be used to write arbitrary data to potentially carefully-selected addresses.  Pro-
     grammers are therefore strongly advised to never pass untrusted strings as the format argu-
     ment, as an attacker can put format specifiers in the string to mangle your stack, leading
     to a possible security hole.  This holds true even if the string was built using a function
     like snprintf(), as the resulting string may still contain user-supplied conversion speci-
     fiers for later interpolation by printf().

     Always use the proper secure idiom:

	   snprintf(buffer, sizeof(buffer), "%s", string);

COMPATIBILITY
     Many application writers used the name dprintf before the dprintf() function was introduced
     in IEEE Std 1003.1 (``POSIX.1''), so a prototype is not provided by default in order to
     avoid compatibility problems.  Applications that wish to use the dprintf() function
     described herein should either request a strict IEEE Std 1003.1-2008 (``POSIX.1'') environ-
     ment by defining the macro _POSIX_C_SOURCE to the value 200809 or greater, or by defining
     the macro _WITH_DPRINTF, prior to the inclusion of <stdio.h>.  For compatibility with GNU
     libc, defining either _BSD_SOURCE or _GNU_SOURCE prior to the inclusion of <stdio.h> will
     also make dprintf() available.

     The conversion formats %D, %O, and are not standard and are provided only for backward
     compatibility.  The effect of padding the format with zeros (either by the 0 flag or by
     specifying a precision), and the benign effect (i.e., none) of the # flag on %n and %p con-
     versions, as well as other nonsensical combinations such as %Ld, are not standard; such com-
     binations should be avoided.

ERRORS
     In addition to the errors documented for the write(2) system call, the printf() family of
     functions may fail if:

     [EILSEQ]		An invalid wide character code was encountered.

     [ENOMEM]		Insufficient storage space is available.

SEE ALSO
     printf(1), fmtcheck(3), scanf(3), setlocale(3), wprintf(3)

STANDARDS
     Subject to the caveats noted in the BUGS section below, the fprintf(), printf(), sprintf(),
     vprintf(), vfprintf(), and vsprintf() functions conform to ANSI X3.159-1989 (``ANSI C89'')
     and ISO/IEC 9899:1999 (``ISO C99'').  With the same reservation, the snprintf() and
     vsnprintf() functions conform to ISO/IEC 9899:1999 (``ISO C99''), while dprintf() and
     vdprintf() conform to IEEE Std 1003.1-2008 (``POSIX.1'').

HISTORY
     The functions asprintf() and vasprintf() first appeared in the GNU C library.  These were
     implemented by Peter Wemm <peter@FreeBSD.org> in FreeBSD 2.2, but were later replaced with a
     different implementation from Todd C. Miller <Todd.Miller@courtesan.com> for OpenBSD 2.3.
     The dprintf() and vdprintf() functions were added in FreeBSD 8.0.

BUGS
     The printf family of functions do not correctly handle multibyte characters in the format
     argument.

BSD					  March 3, 2009 				      BSD
The UNIX and Linux Forums Man Pages : 2014 The UNIX and Linux Forums


All times are GMT -4. The time now is 11:40 PM.