Reading ELF file Symbol table of C++ program


 
Thread Tools Search this Thread
Operating Systems Linux Reading ELF file Symbol table of C++ program
# 1  
Old 08-01-2009
Reading ELF file Symbol table of C++ program

Folks,

I have some program(Test.cpp) as follows,
#include<iostream>
class Abc
{
private:
int _theVar;
public :
int printVar();

};
int Abc :: printVar()
{
_theVar=10;

}
main()
{
Abc _t;
_t.printVar();
}

I compiled the program using g++ ( g++ -o Test Test.cpp)

After this i tried read the "Test ELF" file's symbol table. I am able fetch the Abc :: printVar symbol, but i am not able to fetch the _theVar of Abc class. Please help me out in solving the this issue.

Rgds,
VInod
Login or Register to Ask a Question

Previous Thread | Next Thread

10 More Discussions You Might Find Interesting

1. Programming

Search the symbol table of a child process

Hi, I am a newbie in Linux land, and I have a question about programming parent/child process interaction: How do I search the value of a symbol in the child process? Is it possible? I am doing a fork() and execve() to spawn any child possible, and I need something on the parent side to... (12 Replies)
Discussion started by: alphakili
12 Replies

2. UNIX for Beginners Questions & Answers

1. This will insert the records into db table by reading from ta csv file

I have this code with me but the condition is If any of the mandatory columns are null then entire file will be rejected. LOAD DATA infile ' ' #specifies the name of a datafile containing data that you want to load BADFILE ' ' #specifies the name of... (1 Reply)
Discussion started by: raka123
1 Replies

3. Programming

How to prevent a C++ program reading a file that is still being written to.?

Hi, Hopefully someone can help. We have a process that writes a file using Connect Direct to our local Solaris server and then our C++ program will pick up the file and process it. Unfortunately, because of the size of the file, the C++ program is processing the file before it has finished... (7 Replies)
Discussion started by: chris01010
7 Replies

4. Shell Programming and Scripting

Perl Script for reading table format data from file.

Hi, i need a perl script which reads the file, content is given below. and output in new file. TARGET DRIVE IO1 IO2 IO3 IO4 IO5 ------------ --------- --------- --------- --------- --------- 0a.1.8 266 236 ... (3 Replies)
Discussion started by: asak
3 Replies

5. Shell Programming and Scripting

Reading from a file a background program writes to

Hi! #!/usr/bin/env bash rm tmpcomm nc -v -u -l 444 | hexdump -b > tmpcomm while : do read l1 < tmpcomm read l2 < tmpcomm read l3 < tmpcomm read l4 < tmpcomm # do something doneI start netcat in the background and listen for an incoming conncetion. All incoming... (1 Reply)
Discussion started by: torax123
1 Replies

6. Programming

Symbol table of a C program

Hi, is there any command to see symbol table info. will it show where its allocating memory for varibales golbals & locals and code.(i mean the segments). i read there is a section called read only data segment and this is where initialized data such as strings stores. i have wriiten the... (7 Replies)
Discussion started by: MrUser
7 Replies

7. Programming

Reading ELF file Symbol table of C++ program

Folks, I have some program(Test.cpp) as follows, #include<iostream> class Abc { private: int _theVar; public : int printVar(); }; int Abc :: printVar() { _theVar=10; } main() { Abc _t; (2 Replies)
Discussion started by: vinod_chitrali
2 Replies

8. Programming

ELF-string table

hello everybody! I want to read the string table of an object file(which is in ELF format). I get the sh_name value but i cant find a way to read the value in the string table that this index represent. I program in C. thanx a lot folks! (3 Replies)
Discussion started by: nicos
3 Replies

9. Programming

how to view symbol table in unix

hi , How to view the contents of a "c" program symbol table information in unix. (1 Reply)
Discussion started by: saravanan_nitt
1 Replies

10. Programming

no symbol table

Hi@all, I try to compile c code on hpux 11.11 pa-risc 2 with gcc (32bit). I compile with the option -g, so that I get the symbol table, but it is not available. Does someone knows something on this? thx (2 Replies)
Discussion started by: Dom_Cyrus
2 Replies
Login or Register to Ask a Question
PERLLEXWARN(1)						 Perl Programmers Reference Guide					    PERLLEXWARN(1)

NAME
perllexwarn - Perl Lexical Warnings DESCRIPTION
The "use warnings" pragma enables to control precisely what warnings are to be enabled in which parts of a Perl program. It's a more flexible alternative for both the command line flag -w and the equivalent Perl variable, $^W. This pragma works just like the "strict" pragma. This means that the scope of the warning pragma is limited to the enclosing block. It also means that the pragma setting will not leak across files (via "use", "require" or "do"). This allows authors to independently define the degree of warning checks that will be applied to their module. By default, optional warnings are disabled, so any legacy code that doesn't attempt to control the warnings will work unchanged. All warnings are enabled in a block by either of these: use warnings; use warnings 'all'; Similarly all warnings are disabled in a block by either of these: no warnings; no warnings 'all'; For example, consider the code below: use warnings; my @a; { no warnings; my $b = @a[0]; } my $c = @a[0]; The code in the enclosing block has warnings enabled, but the inner block has them disabled. In this case that means the assignment to the scalar $c will trip the "Scalar value @a[0] better written as $a[0]" warning, but the assignment to the scalar $b will not. Default Warnings and Optional Warnings Before the introduction of lexical warnings, Perl had two classes of warnings: mandatory and optional. As its name suggests, if your code tripped a mandatory warning, you would get a warning whether you wanted it or not. For example, the code below would always produce an "isn't numeric" warning about the "2:". my $a = "2:" + 3; With the introduction of lexical warnings, mandatory warnings now become default warnings. The difference is that although the previously mandatory warnings are still enabled by default, they can then be subsequently enabled or disabled with the lexical warning pragma. For example, in the code below, an "isn't numeric" warning will only be reported for the $a variable. my $a = "2:" + 3; no warnings; my $b = "2:" + 3; Note that neither the -w flag or the $^W can be used to disable/enable default warnings. They are still mandatory in this case. What's wrong with -w and $^W Although very useful, the big problem with using -w on the command line to enable warnings is that it is all or nothing. Take the typical scenario when you are writing a Perl program. Parts of the code you will write yourself, but it's very likely that you will make use of pre-written Perl modules. If you use the -w flag in this case, you end up enabling warnings in pieces of code that you haven't written. Similarly, using $^W to either disable or enable blocks of code is fundamentally flawed. For a start, say you want to disable warnings in a block of code. You might expect this to be enough to do the trick: { local ($^W) = 0; my $a =+ 2; my $b; chop $b; } When this code is run with the -w flag, a warning will be produced for the $a line: "Reversed += operator". The problem is that Perl has both compile-time and run-time warnings. To disable compile-time warnings you need to rewrite the code like this: { BEGIN { $^W = 0 } my $a =+ 2; my $b; chop $b; } The other big problem with $^W is the way you can inadvertently change the warning setting in unexpected places in your code. For example, when the code below is run (without the -w flag), the second call to "doit" will trip a "Use of uninitialized value" warning, whereas the first will not. sub doit { my $b; chop $b; } doit(); { local ($^W) = 1; doit() } This is a side-effect of $^W being dynamically scoped. Lexical warnings get around these limitations by allowing finer control over where warnings can or can't be tripped. Controlling Warnings from the Command Line There are three Command Line flags that can be used to control when warnings are (or aren't) produced: -w This is the existing flag. If the lexical warnings pragma is not used in any of you code, or any of the modules that you use, this flag will enable warnings everywhere. See "Backward Compatibility" for details of how this flag interacts with lexical warnings. -W If the -W flag is used on the command line, it will enable all warnings throughout the program regardless of whether warnings were disabled locally using "no warnings" or "$^W =0". This includes all files that get included via "use", "require" or "do". Think of it as the Perl equivalent of the "lint" command. -X Does the exact opposite to the -W flag, i.e. it disables all warnings. Backward Compatibility If you are used to working with a version of Perl prior to the introduction of lexically scoped warnings, or have code that uses both lexical warnings and $^W, this section will describe how they interact. How Lexical Warnings interact with -w/$^W: 1. If none of the three command line flags (-w, -W or -X) that control warnings is used and neither $^W nor the "warnings" pragma are used, then default warnings will be enabled and optional warnings disabled. This means that legacy code that doesn't attempt to control the warnings will work unchanged. 2. The -w flag just sets the global $^W variable as in 5.005. This means that any legacy code that currently relies on manipulating $^W to control warning behavior will still work as is. 3. Apart from now being a boolean, the $^W variable operates in exactly the same horrible uncontrolled global way, except that it cannot disable/enable default warnings. 4. If a piece of code is under the control of the "warnings" pragma, both the $^W variable and the -w flag will be ignored for the scope of the lexical warning. 5. The only way to override a lexical warnings setting is with the -W or -X command line flags. The combined effect of 3 & 4 is that it will allow code which uses the "warnings" pragma to control the warning behavior of $^W-type code (using a "local $^W=0") if it really wants to, but not vice-versa. Category Hierarchy A hierarchy of "categories" have been defined to allow groups of warnings to be enabled/disabled in isolation. The current hierarchy is: all -+ | +- closure | +- deprecated | +- exiting | +- glob | +- io -----------+ | | | +- closed | | | +- exec | | | +- layer | | | +- newline | | | +- pipe | | | +- unopened | +- imprecision | +- misc | +- numeric | +- once | +- overflow | +- pack | +- portable | +- recursion | +- redefine | +- regexp | +- severe -------+ | | | +- debugging | | | +- inplace | | | +- internal | | | +- malloc | +- signal | +- substr | +- syntax -------+ | | | +- ambiguous | | | +- bareword | | | +- digit | | | +- illegalproto | | | +- parenthesis | | | +- precedence | | | +- printf | | | +- prototype | | | +- qw | | | +- reserved | | | +- semicolon | +- taint | +- threads | +- uninitialized | +- unpack | +- untie | +- utf8----------+ | | | +- surrogate | | | +- non_unicode | | | +- nonchar | +- void Just like the "strict" pragma any of these categories can be combined use warnings qw(void redefine); no warnings qw(io syntax untie); Also like the "strict" pragma, if there is more than one instance of the "warnings" pragma in a given scope the cumulative effect is additive. use warnings qw(void); # only "void" warnings enabled ... use warnings qw(io); # only "void" & "io" warnings enabled ... no warnings qw(void); # only "io" warnings enabled To determine which category a specific warning has been assigned to see perldiag. Note: In Perl 5.6.1, the lexical warnings category "deprecated" was a sub-category of the "syntax" category. It is now a top-level category in its own right. Fatal Warnings The presence of the word "FATAL" in the category list will escalate any warnings detected from the categories specified in the lexical scope into fatal errors. In the code below, the use of "time", "length" and "join" can all produce a "Useless use of xxx in void context" warning. use warnings; time; { use warnings FATAL => qw(void); length "abc"; } join "", 1,2,3; print "done "; When run it produces this output Useless use of time in void context at fatal line 3. Useless use of length in void context at fatal line 7. The scope where "length" is used has escalated the "void" warnings category into a fatal error, so the program terminates immediately it encounters the warning. To explicitly turn off a "FATAL" warning you just disable the warning it is associated with. So, for example, to disable the "void" warning in the example above, either of these will do the trick: no warnings qw(void); no warnings FATAL => qw(void); If you want to downgrade a warning that has been escalated into a fatal error back to a normal warning, you can use the "NONFATAL" keyword. For example, the code below will promote all warnings into fatal errors, except for those in the "syntax" category. use warnings FATAL => 'all', NONFATAL => 'syntax'; Reporting Warnings from a Module The "warnings" pragma provides a number of functions that are useful for module authors. These are used when you want to report a module- specific warning to a calling module has enabled warnings via the "warnings" pragma. Consider the module "MyMod::Abc" below. package MyMod::Abc; use warnings::register; sub open { my $path = shift; if ($path !~ m#^/#) { warnings::warn("changing relative path to /var/abc") if warnings::enabled(); $path = "/var/abc/$path"; } } 1; The call to "warnings::register" will create a new warnings category called "MyMod::Abc", i.e. the new category name matches the current package name. The "open" function in the module will display a warning message if it gets given a relative path as a parameter. This warnings will only be displayed if the code that uses "MyMod::Abc" has actually enabled them with the "warnings" pragma like below. use MyMod::Abc; use warnings 'MyMod::Abc'; ... abc::open("../fred.txt"); It is also possible to test whether the pre-defined warnings categories are set in the calling module with the "warnings::enabled" function. Consider this snippet of code: package MyMod::Abc; sub open { warnings::warnif("deprecated", "open is deprecated, use new instead"); new(@_); } sub new ... 1; The function "open" has been deprecated, so code has been included to display a warning message whenever the calling module has (at least) the "deprecated" warnings category enabled. Something like this, say. use warnings 'deprecated'; use MyMod::Abc; ... MyMod::Abc::open($filename); Either the "warnings::warn" or "warnings::warnif" function should be used to actually display the warnings message. This is because they can make use of the feature that allows warnings to be escalated into fatal errors. So in this case use MyMod::Abc; use warnings FATAL => 'MyMod::Abc'; ... MyMod::Abc::open('../fred.txt'); the "warnings::warnif" function will detect this and die after displaying the warning message. The three warnings functions, "warnings::warn", "warnings::warnif" and "warnings::enabled" can optionally take an object reference in place of a category name. In this case the functions will use the class name of the object as the warnings category. Consider this example: package Original; no warnings; use warnings::register; sub new { my $class = shift; bless [], $class; } sub check { my $self = shift; my $value = shift; if ($value % 2 && warnings::enabled($self)) { warnings::warn($self, "Odd numbers are unsafe") } } sub doit { my $self = shift; my $value = shift; $self->check($value); # ... } 1; package Derived; use warnings::register; use Original; our @ISA = qw( Original ); sub new { my $class = shift; bless [], $class; } 1; The code below makes use of both modules, but it only enables warnings from "Derived". use Original; use Derived; use warnings 'Derived'; my $a = Original->new(); $a->doit(1); my $b = Derived->new(); $a->doit(1); When this code is run only the "Derived" object, $b, will generate a warning. Odd numbers are unsafe at main.pl line 7 Notice also that the warning is reported at the line where the object is first used. When registering new categories of warning, you can supply more names to warnings::register like this: package MyModule; use warnings::register qw(format precision); ... warnings::warnif('MyModule::format', '...'); SEE ALSO
warnings, perldiag. AUTHOR
Paul Marquess perl v5.16.3 2013-03-04 PERLLEXWARN(1)